AOF日志:宕机了Redis如何避免数据丢失?

news2025/1/16 17:07:04

文章目录

    • AOF 日志是如何实现的?
    • 三种写回策略
    • 日志文件太大了怎么办?
    • AOF 重写会阻塞吗?
    • 小结
    • 每课一问

更多redis相关知识

如果有人问你:“你会把 Redis 用在什么业务场景下?”我想你大概率会说:“我会把它当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快。”没错,这确实是 Redis 的一个普遍使用场景,但是,这里也有一个绝对不能忽略的问题:一旦服务器宕机,内存中的数据将全部丢失。
我们很容易想到的一个解决方案是,从后端数据库恢复这些数据,但这种方式存在两个问题:一是,需要频繁访问数据库,会给数据库带来巨大的压力;二是,这些数据是从慢速数据库中读取出来的,性能肯定比不上从 Redis 中读取,导致使用这些数据的应用程序响应变慢。所以,对 Redis 来说,实现数据的持久化,避免从后端数据库中进行恢复,是至关重要的。
目前,Redis 的持久化主要有两大机制,即 AOF(Append Only File)日志和 RDB 快照。在接下来的两节课里,我们就分别学习一下吧。这节课,我们先重点学习下 AOF 日志。

AOF 日志是如何实现的?

说到日志,我们比较熟悉的是数据库的写前日志(Write Ahead Log, WAL),也就是说,在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。不过,AOF 日志正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志,如下图所示:
!https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0d441171-efd7-4904-a769-73f4fe5ddefc/1.png
那 AOF 为什么要先执行命令再记日志呢?要回答这个问题,我们要先知道 AOF 里记录了什么内容。
传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。
我们以 Redis 收到“set testkey testvalue”命令后记录的日志为例,看看 AOF 日志的内容。其中,“*3”表示当前命令有三个部分,每部分都是由“$+数字”开头,后面紧跟着具体的命令、键或值。这里,“数字”表示这部分中的命令、键或值一共有多少字节。例如,“$3 set”表示这部分有 3 个字节,也就是“set”命令。
!https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d6441ab8-143e-43e7-a83d-fbe0a4610cf7/2.png
但是,为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。
而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。
除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作。
不过,AOF 也有两个潜在的风险。
首先,如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复,但是,如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。
其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。
仔细分析的话,你就会发现,这两个风险都是和 AOF 写回磁盘的时机相关的。这也就意味着,如果我们能够控制一个写命令执行完后 AOF 日志写回磁盘的时机,这两个风险就解除了。

三种写回策略

其实,对于这个问题,AOF 机制给我们提供了三个选择,也就是 AOF 配置项 appendfsync 的三个可选值。
Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;
No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。
针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。我们来分析下其中的原因。
“同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操作,不可避免地会影响主线程性能;
虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就丢失了;
“每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。
我把这三种策略的写回时机,以及优缺点汇总在了一张表格里,以方便你随时查看。
!https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c8ca7ff0-281f-40f2-897b-234691cc95a1/3.png
到这里,我们就可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略了。总结一下就是:想要获得高性能,就选择 No 策略;如果想要得到高可靠性保证,就选择 Always 策略;如果允许数据有一点丢失,又希望性能别受太大影响的话,那么就选择 Everysec 策略。
但是,按照系统的性能需求选定了写回策略,并不是“高枕无忧”了。毕竟,AOF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题。
这里的“性能问题”,主要在于以下三个方面:一是,文件系统本身对文件大小有限制,无法保存过大的文件;二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。
所以,我们就要采取一定的控制手段,这个时候,AOF 重写机制就登场了。

日志文件太大了怎么办?

简单来说,AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入。比如说,当读取了键值对“testkey”: “testvalue”之后,重写机制会记录 set testkey testvalue 这条命令。这样,当需要恢复时,可以重新执行该命令,实现“testkey”: “testvalue”的写入。
为什么重写机制可以把日志文件变小呢? 实际上,重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。
我们知道,AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了。
下面这张图就是一个例子:
!https://s3-us-west-2.amazonaws.com/secure.notion-static.com/27da765e-0ead-4681-a60c-023d64661de1/4.png
当我们对一个列表先后做了 6 次修改操作后,列表的最后状态是[“D”, “C”, “N”],此时,只用 LPUSH u:list “N”, “C”, “D”这一条命令就能实现该数据的恢复,这就节省了五条命令的空间。对于被修改过成百上千次的键值对来说,重写能节省的空间当然就更大了。
不过,虽然 AOF 重写后,日志文件会缩小,但是,要把整个数据库的最新数据的操作日志都写回磁盘,仍然是一个非常耗时的过程。这时,我们就要继续关注另一个问题了:重写会不会阻塞主线程?

AOF 重写会阻塞吗?

和 AOF 日志由主线程写回不同,重写过程是由后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。
我把重写的过程总结为“一个拷贝,两处日志”。
“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。
“两处日志”又是什么呢?
因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。
而第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。
!https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c1931b0c-4935-4533-9cff-99ed5b886df9/5.png
总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,因为 Redis 采用额外的线程进行数据重写,所以,这个过程并不会阻塞主线程。

小结

这节课,我向你介绍了 Redis 用于避免数据丢失的 AOF 方法。这个方法通过逐一记录操作命令,在恢复时再逐一执行命令的方式,保证了数据的可靠性。
这个方法看似“简单”,但也是充分考虑了对 Redis 性能的影响。总结来说,它提供了 AOF 日志的三种写回策略,分别是 Always、Everysec 和 No,这三种策略在可靠性上是从高到低,而在性能上则是从低到高。
此外,为了避免日志文件过大,Redis 还提供了 AOF 重写机制,直接根据数据库里数据的最新状态,生成这些数据的插入命令,作为新日志。这个过程通过后台线程完成,避免了对主线程的阻塞。
其中,三种写回策略体现了系统设计中的一个重要原则 ,即 trade-off,或者称为“取舍”,指的就是在性能和可靠性保证之间做取舍。我认为,这是做系统设计和开发的一个关键哲学,我也非常希望,你能充分地理解这个原则,并在日常开发中加以应用。
不过,你可能也注意到了,落盘时机和重写机制都是在“记日志”这一过程中发挥作用的。例如,落盘时机的选择可以避免记日志时阻塞主线程,重写可以避免日志文件过大。但是,在“用日志”的过程中,也就是使用 AOF 进行故障恢复时,我们仍然需要把所有的操作记录都运行一遍。再加上 Redis 的单线程设计,这些命令操作只能一条一条按顺序执行,这个“重放”的过程就会很慢了。
那么,有没有既能避免数据丢失,又能更快地恢复的方法呢?当然有,那就是 RDB 快照了。下节课,我们就一起学习一下,敬请期待。

每课一问

这节课,我给你提两个小问题:
AOF 日志重写的时候,是由 bgrewriteaof 子进程来完成的,不用主线程参与,我们今天说的非阻塞也是指子进程的执行不阻塞主线程。但是,你觉得,这个重写过程有没有其他潜在的阻塞风险呢?如果有的话,会在哪里阻塞?
AOF 重写也有一个重写日志,为什么它不共享使用 AOF 本身的日志呢?
希望你能好好思考一下这两个问题,欢迎在留言区分享你的答案。另外,也欢迎你把这节课的内容转发出去,和更多的人一起交流讨论。
希望你能好好思考一下这两个问题,欢迎在留言区分享你的答案。另外,也欢迎你把这节课的内容转发出去,和更多的人一起交流讨论。

若有错误与不足请指出,关注DPT一起进步吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2277630.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mysql--实战篇--SQL优化(查询优化器,常用的SQL优化方法,执行计划EXPLAIN,Mysql性能调优,慢日志开启和分析等)

一、查询优化 1、查询优化器 (Query Optimizer) MySQL查询优化器(Query Optimizer)是MySQL数据库管理系统中的一个关键组件,负责分析和选择最有效的执行计划来执行SQL查询。查询优化器的目标是尽可能减少查询的执行时间和资源消耗&#xff…

CV项目详解:基于yolo8的车辆识别系统(含源码和具体教程)

使用YOLOv8(You Only Look Once)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。 使用YOLOv8和OpenCV实现车道线…

osg中实现模型的大小、颜色、透明度的动态变化

以博饼状模型为对象,实现了模型大小、颜色、透明度的动态变化。 需要注意的是一点: // 创建材质对象osg::ref_ptr<osg::Material> material = new osg::Material;material->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4(0.0, 1.0, 0.0, 0.5));// 获取模型的…

小米vela系统(基于开源nuttx内核)——openvela开源项目

前言 在 2024 年 12 月 27 日的小米「人车家全生态」合作伙伴大会上&#xff0c;小米宣布全面开源 Vela 操作系统。同时&#xff0c;OpenVela 项目正式上线 GitHub 和 Gitee&#xff0c;采用的是比较宽松的 Apache 2.0 协议&#xff0c;这意味着全球的开发者都可以参与到 Vela…

《数据思维》之数据可视化_读书笔记

文章目录 系列文章目录前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 数据之道&#xff0c;路漫漫其修远兮&#xff0c;吾将上下而求索。 一、数据可视化 最基础的数据可视化方法就是统计图。一个好的统计图应该满足四个标准&#xff1a;准确、有…

AI刷题-最大矩形面积问题、小M的数组变换

目录 一、最大矩形面积问题 问题描述 输入格式 输出格式 输入样例 输出样例 数据范围 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终代码&#xff1a; 运行结果&#xff1a; 二、小M的数组变换 问题描述 测试样例 解题思路&#xff1a; 问题…

数据库(MySQL)练习

数据库&#xff08;MySQL&#xff09;练习 一、练习1.15练习练习 二、注意事项2.1 第四天 一、练习 1.15练习 win11安装配置MySQL超详细教程: https://baijiahao.baidu.com/s?id1786910666566008458&wfrspider&forpc 准备工作&#xff1a; mysql -uroot -p #以管理…

C语言:-三子棋游戏代码:分支-循环-数组-函数集合

思路分析&#xff1a; 1、写菜单 2、菜单之后进入游戏的操作 3、写函数 实现游戏 3.1、初始化棋盘函数&#xff0c;使数组元素都为空格 3.2、打印棋盘 棋盘的大概样子 3.3、玩家出棋 3.3.1、限制玩家要下的坐标位置 3.3.2、判断玩家要下的位置是否由棋子 3.4、电脑出棋 3.4.1、…

知识图谱常见的主流图数据库

在知识图谱中&#xff0c;主流使用的图数据库包括以下几种&#xff1a; Neo4j&#xff1a;这是目前全球部署最广泛的图数据库之一&#xff0c;具有强大的查询性能和灵活的数据模型&#xff0c;适用于复杂关系数据的存储和查询。 JanusGraph&#xff1a;JanusGraph是一个开源的…

Nginx三种不同类型的虚拟主机(基于域名、IP 和端口)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; Nginx-从零开始的服务器之旅专栏&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2025年1月15日13点14分 目录 1. 基于域名的虚拟主机 …

RabbitMQ(四)

SpringBoot整合RabbitMQ SpringBoot整合1、生产者工程①创建module②配置POM③YAML④主启动类⑤测试程序 2、消费者工程①创建module②配置POM③YAML文件内配置&#xff1a; ④主启动类⑤监听器 3、RabbitListener注解属性对比①bindings属性②queues属性 SpringBoot整合 1、生…

java_将数据存入elasticsearch进行高效搜索

使用技术简介&#xff1a; (1) 使用Nginx实现反向代理&#xff0c;使前端可以调用多个微服务 (2) 使用nacos将多个服务管理关联起来 (3) 将数据存入elasticsearch进行高效搜索 (4) 使用消息队列rabbitmq进行消息的传递 (5) 使用 openfeign 进行多个服务之间的api调用 参…

win32汇编环境,对话框程序中组合框的应用举例

;运行效果 ;win32汇编环境,对话框程序中组合框的应用举例 ;比如在对话框中生成组合框&#xff0c;增加子项&#xff0c;删除某项&#xff0c;取得指定项内容等 ;直接抄进RadAsm可编译运行。重点部分加备注。 ;以下是ASM文件 ;>>>>>>>>>>>>…

occ的开发框架

occ的开发框架 1.Introduction This manual explains how to use the Open CASCADE Application Framework (OCAF). It provides basic documentation on using OCAF. 2.Purpose of OCAF OCAF (the Open CASCADE Application Framework) is an easy-to-use platform for ra…

Linux检查磁盘占用情况

1.检查使用情况 df -h发现是/dev/vda1占用很高 2.查看/dev/vda1文件夹 cd /dev/vda1发现不是文件夹 3.继续查看使用情况 df -h *4.原因可能是文件已经删除但是进程还在&#xff0c;没有释放空间 5.查看删除操作的进程 lsof -n | grep deleted6.杀死进程 kill -9 PID

C# (图文教学)在C#的编译工具Visual Studio中使用SQLServer并对数据库中的表进行简单的增删改查--14

目录 一.安装SQLServer 二.在SQLServer中创建一个数据库 1.打开SQL Server Manager Studio(SSMS)连接服务器 2.创建新的数据库 3.创建表 三.Visual Studio 配置 1.创建一个简单的VS项目(本文创建为一个简单的控制台项目) 2.添加数据库连接 四.简单连通代码示例 简单连…

Flutter插件制作、本地/远程依赖及缓存机制深入剖析(原创-附源码)

Flutter插件在开发Flutter项目的过程中扮演着重要的角色&#xff0c;我们从 ​​​​​​https://pub.dev 上下载添加到项目中的第三方库都是以包或者插件的形式引入到代码中的&#xff0c;这些第三方工具极大的提高了开发效率。 深入的了解插件的制作、发布、工作原理和缓存机…

自动化办公|xlwings简介

xlwings 是一个开源的 Python 库&#xff0c;旨在实现 Python 与 Microsoft Excel 的无缝集成。它允许用户使用 Python 脚本自动化 Excel 操作&#xff0c;读取和写入数据&#xff0c;执行宏&#xff0c;甚至调用 VBA 脚本。这使得数据分析、报告生成和其他与 Excel 相关的任务…

Dify应用-工作流

目录 DIFY 工作流参考 DIFY 工作流 2025-1-15 老规矩感谢参考文章的作者,避免走弯路。 2025-1-15 方便容易上手 在dify的一个桌面上,添加多个节点来完成一个任务。 每个工作流必须有一个开始和结束节点。 节点之间用线连接即可。 每个节点可以有输入和输出 输出类型有,字符串,…

《C++11》并发库:简介与应用

在C11之前&#xff0c;C并没有提供原生的并发支持。开发者通常需要依赖于操作系统的API&#xff08;如Windows的CreateThread或POSIX的pthread_create&#xff09;或者第三方库&#xff08;如Boost.Thread&#xff09;来创建和管理线程。这些方式存在以下几个问题&#xff1a; …