【大数据】机器学习------神经网络模型

news2025/1/15 17:00:42

一、神经网络模型

1. 基本概念
神经网络是一种模拟人类大脑神经元结构的计算模型,由多个神经元(节点)组成,这些节点按照不同层次排列,通常包括输入层、一个或多个隐藏层和输出层。每个神经元接收来自上一层神经元的输入,通过加权求和和激活函数处理后将结果传递给下一层。

在这里插入图片描述

2. 数学公式
对于一个具有 L L L 层的神经网络,第 l l l 层第 j j j 个神经元的输入 z j l z_j^l zjl 可以表示为:
在这里插入图片描述

其中 w i j l − 1 w_{ij}^{l-1} wijl1 是第 l − 1 l-1 l1 层第 i i i 个神经元到第 l l l 层第 j j j 个神经元的连接权重, a i l − 1 a_i^{l-1} ail1 是第 l − 1 l-1 l1 层第 i i i 个神经元的输出(激活值), b j l b_j^l bjl 是第 l l l 层第 j j j 个神经元的偏置。

激活函数 a j l = f ( z j l ) a_j^l = f(z_j^l) ajl=f(zjl),常见的激活函数有:

  • Sigmoid 函数在这里插入图片描述

  • ReLU 函数在这里插入图片描述

  • Tanh 函数在这里插入图片描述

二、感知机与多层网络

1. 感知机
感知机是一种最简单的神经网络,可用于二分类任务。对于输入向量 x = ( x 1 , x 2 , ⋯   , x n ) \mathbf{x}=(x_1,x_2,\cdots,x_n) x=(x1,x2,,xn),感知机的输出为:
在这里插入图片描述

其中 (sign) 函数为符号函数,当 (z\geq0) 时,(sign(z)=1);当 (z<0) 时,(sign(z)=-1)。

2. 多层感知机(MLP)
多层感知机包含多个隐藏层,能够解决非线性可分问题。

代码示例:感知机

import numpy as np


class Perceptron:
    def __init__(self, input_size, learning_rate=0.01, epochs=100):
        self.weights = np.random.rand(input_size)
        self.bias = np.random.rand(1)
        self.learning_rate = learning_rate
        self.epochs = epochs

    def activation(self, z):
        return 1 if z >= 0 else -1

    def predict(self, x):
        linear_output = np.dot(x, self.weights) + self.bias
        return self.activation(linear_output)

    def train(self, X, y):
        for _ in range(self.epochs):
            for x, label in zip(X, y):
                prediction = self.predict(x)
                update = self.learning_rate * (label - prediction)
                self.weights += update * x
                self.bias += update


# 示例数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([-1, -1, -1, 1])

# 初始化感知机
perceptron = Perceptron(input_size=2)

# 训练感知机
perceptron.train(X, y)

# 预测
print(perceptron.predict([1, 1]))

在这里插入图片描述

代码解释

  • __init__ 方法初始化感知机的权重、偏置、学习率和训练轮数。
  • activation 是激活函数,这里使用简单的符号函数。
  • predict 计算感知机的输出。
  • train 方法根据训练数据更新权重和偏置。

三、误差逆传播算法(BP 算法)

BP 算法用于训练多层神经网络,通过计算输出误差并将其反向传播更新权重和偏置。

1. 前向传播
计算每层的输入和输出:
在这里插入图片描述

2. 反向传播
计算输出层误差:
在这里插入图片描述

对于隐藏层:
在这里插入图片描述

权重更新公式:
在这里插入图片描述

偏置更新公式:
在这里插入图片描述

代码示例:BP 算法实现

import numpy as np


def sigmoid(z):
    return 1 / (1 + np.exp(-z))


def sigmoid_derivative(z):
    return sigmoid(z) * (1 - sigmoid(z))


class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.weights_input_hidden = np.random.rand(self.input_size, self.hidden_size)
        self.weights_hidden_output = np.random.rand(self.hidden_size, self.output_size)
        self.bias_hidden = np.random.rand(self.hidden_size)
        self.bias_output = np.random.rand(self.output_size)

    def forward(self, x):
        self.z_hidden = np.dot(x, self.weights_input_hidden) + self.bias_hidden
        self.a_hidden = sigmoid(self.z_hidden)
        self.z_output = np.dot(self.a_hidden, self.weights_hidden_output) + self.bias_output
        self.a_output = sigmoid(self.z_output)
        return self.a_output

    def backward(self, x, y, learning_rate):
        # 计算输出层误差
        output_error = y - self.a_output
        output_delta = output_error * sigmoid_derivative(self.z_output)
        # 计算隐藏层误差
        hidden_error = np.dot(output_delta, self.weights_hidden_output.T)
        hidden_delta = hidden_error * sigmoid_derivative(self.z_hidden)
        # 更新权重和偏置
        self.weights_hidden_output += learning_rate * np.outer(self.a_hidden, output_delta)
        self.bias_output += learning_rate * output_delta
        self.weights_input_hidden += learning_rate * np.outer(x, hidden_delta)
        self.bias_hidden += learning_rate * hidden_delta


# 示例数据
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])

# 初始化神经网络
nn = NeuralNetwork(input_size=2, hidden_size=2, output_size=1)

# 训练
for epoch in range(10000):
    for x, target in zip(X, y):
        nn.forward(x)
        nn.backward(x, target, learning_rate=0.1)


# 预测
print(nn.forward([1, 1]))
```![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/65389eb31fe24fbea5bf766e92472d30.png)

**代码解释**- `sigmoid` 和 `sigmoid_derivative` 函数分别计算 sigmoid 函数及其导数。
- `NeuralNetwork` 类包含初始化权重和偏置、前向传播和反向传播的方法。
- `forward` 计算网络的输出。
- `backward` 计算误差并更新权重和偏置。


**四、全局最小与局部最小**

**1. 概念**
- **全局最小**:在整个参数空间中,损失函数达到的最小点。
- **局部最小**:在参数空间的某个局部区域内,损失函数达到的最小点,但不是全局最小。

**2. 解决方法**
- 随机初始化权重。
- 使用模拟退火等算法。


**五、其他常见神经网络**

**1. 卷积神经网络 (CNN)**
主要用于图像处理,利用卷积层提取特征,通过池化层降低维度。

**代码示例:使用 Keras 实现 CNN**
```python
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
import numpy as np


# 构建简单的 CNN 模型
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(10, activation='softmax')
])


# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])


# 示例数据
X = np.random.random((100, 28, 28, 1))
y = np.random.randint(0, 10, (100,))


# 训练模型
model.fit(X, y, epochs=10)

代码解释

  • Conv2D 是卷积层,MaxPooling2D 是池化层,Flatten 将多维数据展平,Dense 是全连接层。
  • model.compile 配置模型的优化器和损失函数。
  • model.fit 进行模型训练。

2. 循环神经网络 (RNN)
适用于序列数据,如文本、时间序列,通过隐藏状态保存序列信息。

代码示例:使用 Keras 实现 RNN

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
import numpy as np


# 构建简单的 RNN 模型
model = Sequential([
    SimpleRNN(50, activation='relu', input_shape=(10, 1)),
    Dense(1)
])


# 编译模型
model.compile(optimizer='adam', loss='mse')


# 示例数据
X = np.random.random((100, 10, 1))
y = np.random.random((100, 1))


# 训练模型
model.fit(X, y, epochs=10)

代码解释

  • SimpleRNN 是简单循环神经网络层。
  • 其余部分与 CNN 示例类似,包括模型的编译和训练。

六、深度学习
深度学习是使用具有多个层次的神经网络进行学习的技术,通过大量数据和强大的计算能力训练复杂的网络结构,在图像识别、语音识别、自然语言处理等领域取得了巨大成功。

通过以上内容,你可以对神经网络的各个知识点有一个全面的了解,包括基本的数学公式、不同类型神经网络的实现代码,以及如何使用流行的深度学习框架(如 Keras)进行模型的构建和训练。不同的网络结构和算法可以根据具体的任务和数据特点进行选择和优化,以达到更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2277104.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【day5】Redis持久化之AOF + Redis事务_锁机制

AOF是什么 以日志的形式来记录每个写操作(增量保存)&#xff0c;将 Redis 执行过的所有写指令记录下来(比 如 set/del 操作会记录, 读操作 get 不记录 只许追加文件但不可以改写文件 redis 启动之初会读取该文件重新构建数据 redis 重启的话就根据日志文件的内容将写指令从前到…

【Python】Python之locust压测教程+从0到1demo:基础轻量级压测实战(1)

文章目录 一、什么是Locust二、Locust 架构组成三、实战 Demo准备一个可调用的接口编写一个接口测试用例编写一个性能测试用例执行性能测试用例代码1、通过 Web UI 执行&#xff08;GUI模式&#xff09;2、通过命令行执行&#xff08;非GUI模式&#xff09; 小知识&#xff1a;…

Jaeger UI使用、采集应用API排除特定路径

Jaeger使用 注&#xff1a; Jaeger服务端版本为&#xff1a;jaegertracing/all-in-one-1.6.0 OpenTracing版本为&#xff1a;0.33.0&#xff0c;最后一个版本&#xff0c;停留在May 06, 2019。最好升级到OpenTelemetry。 Jaeger客户端版本为&#xff1a;jaeger-client-1.3.2。…

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用-以ENSO预测为例讲解

1. 背景与目标 ENSO&#xff08;El Nio-Southern Oscillation&#xff09;是全球气候系统中最显著的年际变率现象之一&#xff0c;对全球气候、农业、渔业等有着深远的影响。准确预测ENSO事件的发生和发展对于减灾防灾具有重要意义。近年来&#xff0c;深度学习技术在气象领域…

【IDEA 2024】学习笔记--文件选项卡

在我们项目的开发过程中&#xff0c;由于项目涉及的类过多&#xff0c;以至于我们会打开很多的窗口。使用IDEA默认的配置&#xff0c;个人觉得十分不便。 目录 一、设置多个文件选项卡按照文件字母顺序排列 二、设置多个文件选项卡分行显示 一、设置多个文件选项卡按照文件字…

nginx的可视化配置工具nginxWebUI的使用

文章目录 1、nginx简介2、nginxWebUI2.1、技术解读2.2、开源版和专业版之间的区别2.3、功能解读 3、安装与使用3.1、下载镜像3.2、查看镜像3.3、启动容器3.4、使用 4、总结 1、nginx简介 Nginx 是一个高效的 HTTP 服务器和反向代理&#xff0c;它擅长处理静态资源、负载均衡和…

qt vs ios开发应用环境搭建和上架商店的记录

qt 下载链接如下 https://download.qt.io/new_archive/qt/5.14/5.14.2/qt-opensource-mac-x64-5.14.2.dmg 安装选项全勾选就行&#xff0c;这里特别说明下qt5.14.2/qml qt5.14.2对qml支持还算成熟&#xff0c;但很多特性还得qt6才行&#xff0c;这里用qt5.14.2主要是考虑到服…

系统思考—全局思维

在一个复杂的企业中&#xff0c;无论是生产、营销、研发、产品还是采购&#xff0c;作为核心团队&#xff0c;大家不只关注单一的问题——需要从整体出发。企业是一个有机的整体&#xff0c;每一个环节都息息相关。如果只解决一个问题&#xff0c;却忽视了其他部分的相互作用&a…

软件设计师 - 第10章 网络与信息安全基础知识

网络概述 功能:数据通信,资源共享,管理集中化,实现分布式处理,负载均衡 分类:局域网,城域网,广域网 拓扑结构:总线型,星型,环型,树型,分布式 ISO/OSI七层模型: 应用层:提供与用户交互的界面,并支持特定应用程序的服务,FTP、Telnet、SMTP、NFS、SNMP、HTTP、…

记录一次Android Studio的下载、安装、配置

目录 一、下载和安装 Android Studio 1、搜索下载Android studio ​2、下载成功后点击安装包进行安装&#xff1a; 3、这里不用打勾&#xff0c;直接点击安装 &#xff1a; 4、完成安装&#xff1a; 5、这里点击Cancel就可以了 6、接下来 7、点击自定义安装&#xff1a…

自定义注解使用AspectJ切面和SpringBoot的Even事件优雅记录业务接口及第三方接口调用日志实现思路

自定义注解使用AspectJ切面和SpringBoot的Even事件优雅记录业务接口及第三方接口调用日志实现思路 文章目录 1.前言2.思路2.1使用ELK收集日志2.1.1ELK搭建2.1.2项目中集成ELK日志收集2.1.2.1 引入依赖2.1.2.2 logback-xxx.xml配置2.1.2.3 yaml配置 2.2本文思路2.2.1书接上文--自…

Windows 正确配置android adb调试的方法

下载适用于 Windows 的 SDK Platform-Tools https://developer.android.google.cn/tools/releases/platform-tools?hlzh-cn 设置系统变量&#xff0c;路径为platform-tools文件夹的绝对路径 点击Path添加环境变量 %adb%打开终端输入adb shell 这就成功了&#xff01;

保姆级图文详解:Linux和Docker常用终端命令

文章目录 前言1、Docker 常用命令1.1、镜像管理1.2、容器管理1.3、网络管理1.4、数据卷管理1.5、监控和性能管理 2、Linux 常用命令分类2.1、文件和目录管理2.2、用户管理2.3、系统监控和性能2.4、软件包管理2.5、网络管理 前言 亲爱的家人们&#xff0c;技术图文创作很不容易…

相机SD卡照片数据不小心全部删除了怎么办?有什么方法恢复吗?

前几天&#xff0c;小编在后台友收到网友反馈说他在整理相机里的SD卡&#xff0c;原本是想把那些记录着美好瞬间的照片导出来慢慢欣赏。结果手一抖&#xff0c;不小心点了“删除所有照片”&#xff0c;等他反应过来&#xff0c;屏幕上已经显示“删除成功”。那一刻&#xff0c;…

《C++11》nullptr介绍:从NULL说起

在C11之前&#xff0c;我们通常使用NULL来表示空指针。然而&#xff0c;NULL在C中有一些问题和限制&#xff0c;这就是C11引入nullptr的原因。本文将详细介绍nullptr的定义、用法和优点。 1. NULL的问题 在C中&#xff0c;NULL实际上是一个整数0&#xff0c;而不是一个真正的…

【搭建JavaEE】(2)Tomcat安装配置和第一个JavaEE程序

Tomcat–容器(Container) 下载 Apache Tomcat - Welcome! 下载完成 请求/响应 结构 测试 查看Jdk版本 改端口号localhost8080–>8099 学学人家以后牛逼了可以用自己名字当文件夹名 配置端口8099 找到server文件 用记事本打开 再打开另一个logging文件 ”乱码解决“步骤&…

​​​​​​​​​​​​​​★3.3 事件处理

★3.3.1 ※MouseArea Item <-- MouseArea 属性 acceptedButtons : Qt::MouseButtons containsMouse : bool 【书】只读属性。表明当前鼠标光标是否在MouseArea上&#xff0c;默认只有鼠标的一个按钮处于按下状态时才可以被检测到。 containsPress : bool curs…

【C】初阶数据结构3 -- 单链表

之前在顺序表那一篇文章中&#xff0c;提到顺序表具有的缺点&#xff0c;比如头插&#xff0c;头删时间复杂度为O(n)&#xff0c;realloc增容有消耗等。而在链表中&#xff0c;这些问题将得到解决。所以在这一篇文章里&#xff0c;我们将会讲解链表的定义与性质&#xff0c;以及…

Python----Python高级(函数基础,形参和实参,参数传递,全局变量和局部变量,匿名函数,递归函数,eval()函数,LEGB规则)

一、函数基础 1.1、函数的用法和底层分析 函数是可重用的程序代码块。 函数的作用&#xff0c;不仅可以实现代码的复用&#xff0c;更能实现代码的一致性。一致性指的是&#xff0c;只要修改函数的代码&#xff0c;则所有调用该函数的地方都能得到体现。 在编写函数时&#xf…

《leetcode-runner》如何手搓一个debug调试器——架构

本文主要聚焦leetcode-runner对于debug功能的整体设计&#xff0c;并讲述设计原因以及存在的难点 设计引入 让我们来思考一下&#xff0c;一个最简单的调试器需要哪些内容 首先&#xff0c;它能够接受用户的输入 其次&#xff0c;它能够读懂用户想让调试器干嘛&#xff0c;…