1、task_base.h
本人将自己的理解以注释的形式添加的代码中,方便需要的时候重新复习。该文件中用到的一些技术:
- 该文件中的类并没有使用virtual,而是自定义了需函数表,但是并没有放到每个对象的开始位置,而是通过指针进行存取。
- EBO技术,空类对象本来就占用一个字节的空间,为了节省空间,EBO就是利用这一个字节的空间存储信息
- 对类成员指定内存对齐方式
- 该框架中将一个任务设计成了func和result的组合,task_result用于保存任务的结果而func_holder保存真正执行的函数,而task_func是两者的组合
- template<typename Func, typename = void>,用法在博客中进行了详细介绍
- 这个框架中用到了大量的元编程,感觉很牛逼,本人借助大模型勉强看懂,不知道什么时候能像作者一样,可以熟练的设计一套这样的框架。
// 该枚举是任务的状态,其中比较难理解的是unwrapped
// unwrapped 表示任务处于分解的状态,该任务被分解成了子任务
// completed 和 canceled都表示任务结束状态,一个是正常完成状态,一个是异常取消状态
enum class task_state: unsigned char {
pending, // Task has not completed yet
locked, // Task is locked (used by event_task to prevent double set)
unwrapped, // Task is waiting for an unwrapped task to finish
completed, // Task has finished execution and a result is available
canceled // Task has been canceled and an exception is available
};
// Determine whether a task is in a final state
// 判断任务是不是执行完毕
inline bool is_finished(task_state s)
{
return s == task_state::completed || s == task_state::canceled;
}
// Virtual function table used to allow dynamic dispatch for task objects.
// While this is very similar to what a compiler would generate with virtual
// functions, this scheme was found to result in significantly smaller
// generated code size.
// 自定义的虚函数表
struct task_base_vtable {
// Destroy the function and result
void (*destroy)(task_base*) LIBASYNC_NOEXCEPT;
// Run the associated function
void (*run)(task_base*) LIBASYNC_NOEXCEPT;
// Cancel the task with an exception
void (*cancel)(task_base*, std::exception_ptr&&) LIBASYNC_NOEXCEPT;
// Schedule the task using its scheduler
void (*schedule)(task_base* parent, task_ptr t);
};
// Type-generic base task object
// 任务基类
struct task_base_deleter;
struct LIBASYNC_CACHELINE_ALIGN task_base: public ref_count_base<task_base, task_base_deleter> {
// Task state
std::atomic<task_state> state;
// Whether get_task() was already called on an event_task
// 在event类型的任务中使用
bool event_task_got_task;
// Vector of continuations
// 这个任务的后续任务
continuation_vector continuations;
// Virtual function table used for dynamic dispatch
const task_base_vtable* vtable;
// Use aligned memory allocation
static void* operator new(std::size_t size)
{
return aligned_alloc(size, LIBASYNC_CACHELINE_SIZE);
}
static void operator delete(void* ptr)
{
aligned_free(ptr);
}
// Initialize task state
task_base()
: state(task_state::pending) {}
// Check whether the task is ready and include an acquire barrier if it is
// 检查任务是否完成,完成返回true,否则返回false
bool ready() const
{
return is_finished(state.load(std::memory_order_acquire));
}
// Run a single continuation
template<typename Sched>
void run_continuation(Sched& sched, task_ptr&& cont)
{
LIBASYNC_TRY {
detail::schedule_task(sched, cont);
} LIBASYNC_CATCH(...) {
// This is suboptimal, but better than letting the exception leak
cont->vtable->cancel(cont.get(), std::current_exception());
}
}
// Run all of the task's continuations after it has completed or canceled.
// The list of continuations is emptied and locked to prevent any further
// continuations from being added.
// 任务执行完后,执行延续任务,执行的时候会锁定队列
void run_continuations()
{
continuations.flush_and_lock([this](task_ptr t) {
const task_base_vtable* vtable_ptr = t->vtable;
vtable_ptr->schedule(this, std::move(t));
});
}
// Add a continuation to this task
// 这个调度器参数只有在当前的任务完成时才有作用
template<typename Sched>
void add_continuation(Sched& sched, task_ptr cont)
{
// Check for task completion
// 当前任务还没有执行完,将延续任务添加到容器
// 否则,立马执行延续任务
task_state current_state = state.load(std::memory_order_relaxed);
if (!is_finished(current_state)) {
// Try to add the task to the continuation list. This can fail only
// if the task has just finished, in which case we run it directly.
if (continuations.try_add(std::move(cont)))
return;
}
// Otherwise run the continuation directly
std::atomic_thread_fence(std::memory_order_acquire);
run_continuation(sched, std::move(cont));
}
// Finish the task after it has been executed and the result set
// 当前任务结束时需要调用的函数,当前任务结束后,执行后续任务
void finish()
{
state.store(task_state::completed, std::memory_order_release);
run_continuations();
}
// Wait for the task to finish executing
// 等待当前任务执行结束
task_state wait()
{
task_state s = state.load(std::memory_order_acquire);
if (!is_finished(s)) {
wait_for_task(this);
s = state.load(std::memory_order_relaxed);
}
return s;
}
};
// Deleter for task_ptr
struct task_base_deleter {
static void do_delete(task_base* p)
{
// Go through the vtable to delete p with its proper type
p->vtable->destroy(p);
}
};
// Result type-specific task object
// 定义了一个可以持有任务结果的任务
template<typename Result>
struct task_result_holder: public task_base {
union {
alignas(Result) std::uint8_t result[sizeof(Result)];
alignas(std::exception_ptr) std::uint8_t except[sizeof(std::exception_ptr)];
// Scheduler that should be used to schedule this task. The scheduler
// type has been erased and is held by vtable->schedule.
void* sched;
};
template<typename T>
void set_result(T&& t)
{
new(&result) Result(std::forward<T>(t));
}
// Return a result using an lvalue or rvalue reference depending on the task
// type. The task parameter is not used, it is just there for overload resolution.
// 这里的参数没有使用,作用就是用来指明重载版本
template<typename T>
Result&& get_result(const task<T>&)
{
return std::move(*reinterpret_cast<Result*>(&result));
}
template<typename T>
const Result& get_result(const shared_task<T>&)
{
return *reinterpret_cast<Result*>(&result);
}
// Destroy the result
~task_result_holder()
{
// Result is only present if the task completed successfully
if (state.load(std::memory_order_relaxed) == task_state::completed)
reinterpret_cast<Result*>(&result)->~Result();
}
};
// Specialization for references
// 特化版本
template<typename Result>
struct task_result_holder<Result&>: public task_base {
union {
// Store as pointer internally
Result* result;
alignas(std::exception_ptr) std::uint8_t except[sizeof(std::exception_ptr)];
void* sched;
};
void set_result(Result& obj)
{
result = std::addressof(obj);
}
template<typename T>
Result& get_result(const task<T>&)
{
return *result;
}
template<typename T>
Result& get_result(const shared_task<T>&)
{
return *result;
}
};
// Specialization for void
template<>
struct task_result_holder<fake_void>: public task_base {
union {
alignas(std::exception_ptr) std::uint8_t except[sizeof(std::exception_ptr)];
void* sched;
};
void set_result(fake_void) {}
// Get the result as fake_void so that it can be passed to set_result and
// continuations
template<typename T>
fake_void get_result(const task<T>&)
{
return fake_void();
}
template<typename T>
fake_void get_result(const shared_task<T>&)
{
return fake_void();
}
};
// 外层类,持有结果的任务类
template<typename Result>
struct task_result: public task_result_holder<Result> {
// Virtual function table for task_result
static const task_base_vtable vtable_impl;
task_result()
{
this->vtable = &vtable_impl;
}
// Destroy the exception
~task_result()
{
// Exception is only present if the task was canceled
if (this->state.load(std::memory_order_relaxed) == task_state::canceled)
reinterpret_cast<std::exception_ptr*>(&this->except)->~exception_ptr();
}
// Cancel a task with the given exception
// 取消任务,并且设置指定异常
void cancel_base(std::exception_ptr&& except_)
{
set_exception(std::move(except_));
this->state.store(task_state::canceled, std::memory_order_release);
this->run_continuations();
}
// Set the exception value of the task
void set_exception(std::exception_ptr&& except_)
{
new(&this->except) std::exception_ptr(std::move(except_));
}
// Get the exception a task was canceled with
std::exception_ptr& get_exception()
{
return *reinterpret_cast<std::exception_ptr*>(&this->except);
}
// Wait and throw the exception if the task was canceled
// 该框架中任务的取消都是因为设置了异常
void wait_and_throw()
{
if (this->wait() == task_state::canceled)
LIBASYNC_RETHROW_EXCEPTION(get_exception());
}
// Delete the task using its proper type
// 因为是union,因此只需要销毁Result即可
static void destroy(task_base* t) LIBASYNC_NOEXCEPT
{
delete static_cast<task_result<Result>*>(t);
}
};
template<typename Result>
const task_base_vtable task_result<Result>::vtable_impl = {
task_result<Result>::destroy, // destroy
nullptr, // run
nullptr, // cancel
nullptr // schedule
};
// Class to hold a function object, with empty base class optimization
// 这是一个具有默认类型 void 的模板参数,通常用来配合 SFINAE 来决定是否启用某个特定的模板实例化
template<typename Func, typename = void>
struct func_base {
Func func;
template<typename F>
explicit func_base(F&& f)
: func(std::forward<F>(f)) {}
Func& get_func()
{
return func;
}
};
// 特化版本
// 这种特化通过 空基类优化(EBO)减少了内存开销。
// 对于没有成员变量的类型(如空结构体),通过将 Func 对象直接存储在func_base 的内部内存中,可以避免额外的内存分配。
template<typename Func>
struct func_base<Func, typename std::enable_if<std::is_empty<Func>::value>::type> {
template<typename F>
explicit func_base(F&& f)
{
new(this) Func(std::forward<F>(f));
}
~func_base()
{
get_func().~Func();
}
Func& get_func()
{
return *reinterpret_cast<Func*>(this);
}
};
// Class to hold a function object and initialize/destroy it at any time
template<typename Func, typename = void>
struct func_holder {
alignas(Func) std::uint8_t func[sizeof(Func)];
Func& get_func()
{
return *reinterpret_cast<Func*>(&func);
}
template<typename... Args>
void init_func(Args&&... args)
{
new(&func) Func(std::forward<Args>(args)...);
}
void destroy_func()
{
get_func().~Func();
}
};
template<typename Func>
struct func_holder<Func, typename std::enable_if<std::is_empty<Func>::value>::type> {
Func& get_func()
{
return *reinterpret_cast<Func*>(this);
}
template<typename... Args>
void init_func(Args&&... args)
{
new(this) Func(std::forward<Args>(args)...);
}
void destroy_func()
{
get_func().~Func();
}
};
// Task object with an associated function object
// Using private inheritance so empty Func doesn't take up space
// 这个结构体才是拥有func、任务状态、任务结果的结构体
template<typename Sched, typename Func, typename Result>
struct task_func: public task_result<Result>, func_holder<Func> {
// Virtual function table for task_func
static const task_base_vtable vtable_impl;
template<typename... Args>
explicit task_func(Args&&... args)
{
this->vtable = &vtable_impl;
this->init_func(std::forward<Args>(args)...);
}
// Run the stored function
// 执行对应的任务,其实t指向的是task_func<Sched, Func, Result>类型
// Func在编译的时候也已经确定,执行任务t,并将结果放到t中(只不过这部分由上层实现,模板使用方)
static void run(task_base* t) LIBASYNC_NOEXCEPT
{
LIBASYNC_TRY {
// Dispatch to execution function
static_cast<task_func<Sched, Func, Result>*>(t)->get_func()(t);
} LIBASYNC_CATCH(...) {
cancel(t, std::current_exception());
}
}
// Cancel the task
static void cancel(task_base* t, std::exception_ptr&& except) LIBASYNC_NOEXCEPT
{
// Destroy the function object when canceling since it won't be
// used anymore.
static_cast<task_func<Sched, Func, Result>*>(t)->destroy_func();
static_cast<task_func<Sched, Func, Result>*>(t)->cancel_base(std::move(except));
}
// Schedule a continuation task using its scheduler
// 当当前任务执行完后,执行任务t
static void schedule(task_base* parent, task_ptr t)
{
void* sched = static_cast<task_func<Sched, Func, Result>*>(t.get())->sched;
parent->run_continuation(*static_cast<Sched*>(sched), std::move(t));
}
// Free the function
~task_func()
{
// If the task hasn't completed yet, destroy the function object. Note
// that an unwrapped task has already destroyed its function object.
if (this->state.load(std::memory_order_relaxed) == task_state::pending)
this->destroy_func();
}
// Delete the task using its proper type
static void destroy(task_base* t) LIBASYNC_NOEXCEPT
{
delete static_cast<task_func<Sched, Func, Result>*>(t);
}
};
template<typename Sched, typename Func, typename Result>
const task_base_vtable task_func<Sched, Func, Result>::vtable_impl = {
task_func<Sched, Func, Result>::destroy, // destroy
task_func<Sched, Func, Result>::run, // run
task_func<Sched, Func, Result>::cancel, // cancel
task_func<Sched, Func, Result>::schedule // schedule
};
// Helper functions to access the internal_task member of a task object, which
// avoids us having to specify half of the functions in the detail namespace
// as friend. Also, internal_task is downcast to the appropriate task_result<>.
template<typename Task>
typename Task::internal_task_type* get_internal_task(const Task& t)
{
return static_cast<typename Task::internal_task_type*>(t.internal_task.get());
}
template<typename Task>
void set_internal_task(Task& t, task_ptr p)
{
t.internal_task = std::move(p);
}
// Common code for task unwrapping
template<typename Result, typename Child>
struct unwrapped_func {
explicit unwrapped_func(task_ptr t)
: parent_task(std::move(t)) {}
// 这个函数在子任务执行完成的时候执行,主要的作用是将子任务的执行结果和父任务关联,设置到父任务中去。
void operator()(Child child_task) const
{
// Forward completion state and result to parent task
task_result<Result>* parent = static_cast<task_result<Result>*>(parent_task.get());
LIBASYNC_TRY {
if (get_internal_task(child_task)->state.load(std::memory_order_relaxed) == task_state::completed) {
parent->set_result(get_internal_task(child_task)->get_result(child_task));
parent->finish();
} else {
// We don't call the generic cancel function here because
// the function of the parent task has already been destroyed.
parent->cancel_base(std::exception_ptr(get_internal_task(child_task)->get_exception()));
}
} LIBASYNC_CATCH(...) {
// If the copy/move constructor of the result threw, propagate the exception
parent->cancel_base(std::current_exception());
}
}
task_ptr parent_task;
};
// Sched:调度器类型
// Result:父任务的结果类型
// Func:父任务执行的函数类型
// Child:子任务类型
// 该函数的主要作用是将设置父任务的状态,并将父任务和子任务结果
template<typename Sched, typename Result, typename Func, typename Child>
void unwrapped_finish(task_base* parent_base, Child child_task)
{
// Destroy the parent task's function since it has been executed
// 执行到这里父任务已经执行完毕,只需要让其等待子任务执行的结果
parent_base->state.store(task_state::unwrapped, std::memory_order_relaxed);
static_cast<task_func<Sched, Func, Result>*>(parent_base)->destroy_func();
// Set up a continuation on the child to set the result of the parent
LIBASYNC_TRY {
parent_base->add_ref();
// 设置子任务的延续,使得子任务完成后能够通过 unwrapped_func传递结果给父任务。then 是一个常见的延续函数,它会在子任务完成时触发
child_task.then(inline_scheduler(), unwrapped_func<Result, Child>(task_ptr(parent_base)));
} LIBASYNC_CATCH(...) {
// Use cancel_base here because the function object is already destroyed.
static_cast<task_result<Result>*>(parent_base)->cancel_base(std::current_exception());
}
}
// Execution functions for root tasks:
// - With and without task unwraping
// Sched:调度器类型,定义任务调度的策略。
// Result:任务的返回类型,即执行该任务后得到的结果类型。
// Func:任务执行的函数类型或可调用对象类型。
// Unwrap:布尔类型参数,决定任务是否会进行解包(unwrap)
// 我理解poerator()参数中task_base中static_cast<task_func<Sched, root_exec_func, Result>*>(t)指向的
// Func对象,就是的当前this的this->get_func()
template<typename Sched, typename Result, typename Func, bool Unwrap>
struct root_exec_func: private func_base<Func> {
template<typename F>
explicit root_exec_func(F&& f)
: func_base<Func>(std::forward<F>(f)) {}
void operator()(task_base* t)
{
static_cast<task_result<Result>*>(t)->set_result(detail::invoke_fake_void(std::move(this->get_func())));
static_cast<task_func<Sched, root_exec_func, Result>*>(t)->destroy_func();
t->finish();
}
};
// 特化版本,需要任务分包,其中构造函数中的任务是子任务,operator中的参数是父任务
// 会将子任务的结果设置给父任务
// 我理解poerator()参数中task_base中static_cast<task_func<Sched, root_exec_func, Result>*>(t)指向的
// Func对象是父任务,而this->get_func()是分解出来的任务
template<typename Sched, typename Result, typename Func>
struct root_exec_func<Sched, Result, Func, true>: private func_base<Func> {
template<typename F>
explicit root_exec_func(F&& f)
: func_base<Func>(std::forward<F>(f)) {}
void operator()(task_base* t)
{
unwrapped_finish<Sched, Result, root_exec_func>(t, std::move(this->get_func())());
}
};
// Execution functions for continuation tasks:
// - With and without task unwraping
// - For void, value-based and task-based continuations
// Sched:调度器类型,决定任务如何调度。
// Parent:父任务类型,即当前任务的前驱任务。
// Result:父任务的结果类型,后续任务会使用该结果。
// Func:后续任务执行的函数类型(即任务的函数体)。
// ValueCont 表示后续任务是否需要父任务的返回值做参数
// Unwrap:用于指示是否需要解包父任务的结果。true 表示需要解包,false 表示不需要解包。
template<typename Sched, typename Parent, typename Result, typename Func, typename ValueCont, bool Unwrap>
struct continuation_exec_func: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
static_cast<task_result<Result>*>(t)->set_result(detail::invoke_fake_void(std::move(this->get_func()), std::move(parent)));
static_cast<task_func<Sched, continuation_exec_func, Result>*>(t)->destroy_func();
t->finish();
}
Parent parent;
};
// 当任务有值返回,并且不需要解包时,执行函数根据父任务的结果设置当前任务的结果。如果父任务已被取消,则取消当前任务。
template<typename Sched, typename Parent, typename Result, typename Func>
struct continuation_exec_func<Sched, Parent, Result, Func, std::true_type, false>: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
if (get_internal_task(parent)->state.load(std::memory_order_relaxed) == task_state::canceled)
task_func<Sched, continuation_exec_func, Result>::cancel(t, std::exception_ptr(get_internal_task(parent)->get_exception()));
else {
static_cast<task_result<Result>*>(t)->set_result(detail::invoke_fake_void(std::move(this->get_func()), get_internal_task(parent)->get_result(parent)));
static_cast<task_func<Sched, continuation_exec_func, Result>*>(t)->destroy_func();
t->finish();
}
}
Parent parent;
};
template<typename Sched, typename Parent, typename Result, typename Func>
struct continuation_exec_func<Sched, Parent, Result, Func, fake_void, false>: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
if (get_internal_task(parent)->state.load(std::memory_order_relaxed) == task_state::canceled)
task_func<Sched, continuation_exec_func, Result>::cancel(t, std::exception_ptr(get_internal_task(parent)->get_exception()));
else {
static_cast<task_result<Result>*>(t)->set_result(detail::invoke_fake_void(std::move(this->get_func()), fake_void()));
static_cast<task_func<Sched, continuation_exec_func, Result>*>(t)->destroy_func();
t->finish();
}
}
Parent parent;
};
// 当需要解包父任务的结果时,且父任务没有值返回时,执行函数将父任务的结果传递给后续任务。
template<typename Sched, typename Parent, typename Result, typename Func>
struct continuation_exec_func<Sched, Parent, Result, Func, std::false_type, true>: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
unwrapped_finish<Sched, Result, continuation_exec_func>(t, detail::invoke_fake_void(std::move(this->get_func()), std::move(parent)));
}
Parent parent;
};
// 需要解包且有返回值的情况。它会解包父任务的结果,并使用该结果来设置当前任务的结果。
template<typename Sched, typename Parent, typename Result, typename Func>
struct continuation_exec_func<Sched, Parent, Result, Func, std::true_type, true>: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
if (get_internal_task(parent)->state.load(std::memory_order_relaxed) == task_state::canceled)
task_func<Sched, continuation_exec_func, Result>::cancel(t, std::exception_ptr(get_internal_task(parent)->get_exception()));
else
unwrapped_finish<Sched, Result, continuation_exec_func>(t, detail::invoke_fake_void(std::move(this->get_func()), get_internal_task(parent)->get_result(parent)));
}
Parent parent;
};
template<typename Sched, typename Parent, typename Result, typename Func>
struct continuation_exec_func<Sched, Parent, Result, Func, fake_void, true>: private func_base<Func> {
template<typename F, typename P>
continuation_exec_func(F&& f, P&& p)
: func_base<Func>(std::forward<F>(f)), parent(std::forward<P>(p)) {}
void operator()(task_base* t)
{
if (get_internal_task(parent)->state.load(std::memory_order_relaxed) == task_state::canceled)
task_func<Sched, continuation_exec_func, Result>::cancel(t, std::exception_ptr(get_internal_task(parent)->get_exception()));
else
unwrapped_finish<Sched, Result, continuation_exec_func>(t, detail::invoke_fake_void(std::move(this->get_func()), fake_void()));
}
Parent parent;
};
2、task.h
废话不多说,直接看注释:
namespace detail {
// Common code for task and shared_task
// basic_task 主要对task_base进行了封装,
template<typename Result>
class basic_task {
// Reference counted internal task object
detail::task_ptr internal_task;
// Real result type, with void turned into fake_void
typedef typename void_to_fake_void<Result>::type internal_result;
// Type-specific task object
typedef task_result<internal_result> internal_task_type;
// Friend access
friend async::task<Result>;
friend async::shared_task<Result>;
template<typename T>
friend typename T::internal_task_type* get_internal_task(const T& t);
template<typename T>
friend void set_internal_task(T& t, task_ptr p);
// Common code for get()
// 这里也会等待任务结束
void get_internal() const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
// If the task was canceled, throw the associated exception
get_internal_task(*this)->wait_and_throw();
}
// Common code for then()
template<typename Sched, typename Func, typename Parent>
// 返回的仍然是一个任务,可以继续使用then
typename continuation_traits<Parent, Func>::task_type then_internal(Sched& sched, Func&& f, Parent&& parent) const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
// Save a copy of internal_task because it might get moved into exec_func
task_base* my_internal = internal_task.get();
// Create continuation
typedef continuation_traits<Parent, Func> traits;
typedef typename void_to_fake_void<typename traits::task_type::result_type>::type cont_internal_result;
typedef continuation_exec_func<Sched, typename std::decay<Parent>::type, cont_internal_result, typename traits::decay_func, typename traits::is_value_cont, is_task<typename traits::result_type>::value> exec_func;
typename traits::task_type cont;
// 创建一个新的task,并将新创建的任务放到当前任务的后续任务队列
set_internal_task(cont, task_ptr(new task_func<Sched, exec_func, cont_internal_result>(std::forward<Func>(f), std::forward<Parent>(parent))));
// Add the continuation to this task
// Avoid an expensive ref-count modification since the task isn't shared yet
get_internal_task(cont)->add_ref_unlocked();
get_internal_task(cont)->sched = std::addressof(sched);
my_internal->add_continuation(sched, task_ptr(get_internal_task(cont)));
return cont;
}
public:
// Task result type
typedef Result result_type;
// Check if this task is not empty
bool valid() const
{
return internal_task != nullptr;
}
// Query whether the task has finished executing
bool ready() const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
return internal_task->ready();
}
// Query whether the task has been canceled with an exception
bool canceled() const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
return internal_task->state.load(std::memory_order_acquire) == task_state::canceled;
}
// Wait for the task to complete
void wait() const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
internal_task->wait();
}
// Get the exception associated with a canceled task
// 这里会等待任务执行
std::exception_ptr get_exception() const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty task object");
if (internal_task->wait() == task_state::canceled)
return get_internal_task(*this)->get_exception();
else
return std::exception_ptr();
}
};
// Common code for event_task specializations
// 定义事件,用户可以使用接口从事件获得task<Result>,可以用于存储任务结果
template<typename Result>
class basic_event {
// Reference counted internal task object
detail::task_ptr internal_task;
// Real result type, with void turned into fake_void
typedef typename detail::void_to_fake_void<Result>::type internal_result;
// Type-specific task object
typedef detail::task_result<internal_result> internal_task_type;
// Friend access
friend async::event_task<Result>;
template<typename T>
friend typename T::internal_task_type* get_internal_task(const T& t);
// Common code for set()
template<typename T>
// 将事件的结果关联到成员对象对应的位置
bool set_internal(T&& result) const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty event_task object");
// Only allow setting the value once
detail::task_state expected = detail::task_state::pending;
if (!internal_task->state.compare_exchange_strong(expected, detail::task_state::locked, std::memory_order_acquire, std::memory_order_relaxed))
return false;
LIBASYNC_TRY {
// Store the result and finish
get_internal_task(*this)->set_result(std::forward<T>(result));
internal_task->finish();
} LIBASYNC_CATCH(...) {
// At this point we have already committed to setting a value, so
// we can't return the exception to the caller. If we did then it
// could cause concurrent set() calls to fail, thinking a value has
// already been set. Instead, we simply cancel the task with the
// exception we just got.
get_internal_task(*this)->cancel_base(std::current_exception());
}
return true;
}
public:
// Movable but not copyable
basic_event(basic_event&& other) LIBASYNC_NOEXCEPT
: internal_task(std::move(other.internal_task)) {}
basic_event& operator=(basic_event&& other) LIBASYNC_NOEXCEPT
{
internal_task = std::move(other.internal_task);
return *this;
}
// Main constructor
basic_event()
: internal_task(new internal_task_type)
{
internal_task->event_task_got_task = false;
}
// Cancel events if they are destroyed before they are set
~basic_event()
{
// This check isn't thread-safe but set_exception does a proper check
if (internal_task && !internal_task->ready() && !internal_task->is_unique_ref(std::memory_order_relaxed)) {
#ifdef LIBASYNC_NO_EXCEPTIONS
// This will result in an abort if the task result is read
set_exception(std::exception_ptr());
#else
set_exception(std::make_exception_ptr(abandoned_event_task()));
#endif
}
}
// Get the task linked to this event. This can only be called once.
// 事件只能被取走一次
task<Result> get_task()
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty event_task object");
LIBASYNC_ASSERT(!internal_task->event_task_got_task, std::logic_error, "get_task() called twice on event_task");
// Even if we didn't trigger an assert, don't return a task if one has
// already been returned.
task<Result> out;
if (!internal_task->event_task_got_task)
set_internal_task(out, internal_task);
internal_task->event_task_got_task = true;
return out;
}
// Cancel the event with an exception and cancel continuations
// 将异常结果关联到成员对象对应的位置
bool set_exception(std::exception_ptr except) const
{
LIBASYNC_ASSERT(internal_task, std::invalid_argument, "Use of empty event_task object");
// Only allow setting the value once
detail::task_state expected = detail::task_state::pending;
if (!internal_task->state.compare_exchange_strong(expected, detail::task_state::locked, std::memory_order_acquire, std::memory_order_relaxed))
return false;
// Cancel the task
get_internal_task(*this)->cancel_base(std::move(except));
return true;
}
};
} // namespace detail
template<typename Result>
class task: public detail::basic_task<Result> {
public:
// Movable but not copyable
task() = default;
task(task&& other) LIBASYNC_NOEXCEPT
: detail::basic_task<Result>(std::move(other)) {}
task& operator=(task&& other) LIBASYNC_NOEXCEPT
{
detail::basic_task<Result>::operator=(std::move(other));
return *this;
}
// Get the result of the task
// 等待任务执行完,并获取结果,我理解这是使用了移动语义,取一次后,任务结果就被释放了
Result get()
{
this->get_internal();
// Move the internal state pointer so that the task becomes invalid,
// even if an exception is thrown.
detail::task_ptr my_internal = std::move(this->internal_task);
return detail::fake_void_to_void(static_cast<typename task::internal_task_type*>(my_internal.get())->get_result(*this));
}
// Add a continuation to the task
// 为当前任务添加一个子任务
template<typename Sched, typename Func>
typename detail::continuation_traits<task, Func>::task_type then(Sched& sched, Func&& f)
{
return this->then_internal(sched, std::forward<Func>(f), std::move(*this));
}
// 为当前任务添加一个子任务,使用默认调度器,调度任务
template<typename Func>
typename detail::continuation_traits<task, Func>::task_type then(Func&& f)
{
return then(::async::default_scheduler(), std::forward<Func>(f));
}
// Create a shared_task from this task
shared_task<Result> share()
{
LIBASYNC_ASSERT(this->internal_task, std::invalid_argument, "Use of empty task object");
shared_task<Result> out;
detail::set_internal_task(out, std::move(this->internal_task));
return out;
}
};
template<typename Result>
class shared_task: public detail::basic_task<Result> {
// get() return value: const Result& -or- void
typedef typename std::conditional<
std::is_void<Result>::value,
void,
typename std::add_lvalue_reference<
typename std::add_const<Result>::type
>::type
>::type get_result;
public:
// Movable and copyable
shared_task() = default;
// Get the result of the task
// 这里的任务结果可以多次获取
get_result get() const
{
this->get_internal();
return detail::fake_void_to_void(detail::get_internal_task(*this)->get_result(*this));
}
// Add a continuation to the task
// 为当前任务添加一个子任务
template<typename Sched, typename Func>
typename detail::continuation_traits<shared_task, Func>::task_type then(Sched& sched, Func&& f) const
{
return this->then_internal(sched, std::forward<Func>(f), *this);
}
// 为当前任务添加一个子任务,使用默认调度器,调度任务
template<typename Func>
typename detail::continuation_traits<shared_task, Func>::task_type then(Func&& f) const
{
return then(::async::default_scheduler(), std::forward<Func>(f));
}
};
// Special task type which can be triggered manually rather than when a function executes.
// 手动触发的事件任务
template<typename Result>
class event_task: public detail::basic_event<Result> {
public:
// Movable but not copyable
event_task() = default;
event_task(event_task&& other) LIBASYNC_NOEXCEPT
: detail::basic_event<Result>(std::move(other)) {}
event_task& operator=(event_task&& other) LIBASYNC_NOEXCEPT
{
detail::basic_event<Result>::operator=(std::move(other));
return *this;
}
// Set the result of the task, mark it as completed and run its continuations
bool set(const Result& result) const
{
return this->set_internal(result);
}
bool set(Result&& result) const
{
return this->set_internal(std::move(result));
}
};
// Specialization for references
template<typename Result>
class event_task<Result&>: public detail::basic_event<Result&> {
public:
// Movable but not copyable
event_task() = default;
event_task(event_task&& other) LIBASYNC_NOEXCEPT
: detail::basic_event<Result&>(std::move(other)) {}
event_task& operator=(event_task&& other) LIBASYNC_NOEXCEPT
{
detail::basic_event<Result&>::operator=(std::move(other));
return *this;
}
// Set the result of the task, mark it as completed and run its continuations
bool set(Result& result) const
{
return this->set_internal(result);
}
};
// Specialization for void
template<>
class event_task<void>: public detail::basic_event<void> {
public:
// Movable but not copyable
event_task() = default;
event_task(event_task&& other) LIBASYNC_NOEXCEPT
: detail::basic_event<void>(std::move(other)) {}
event_task& operator=(event_task&& other) LIBASYNC_NOEXCEPT
{
detail::basic_event<void>::operator=(std::move(other));
return *this;
}
// Set the result of the task, mark it as completed and run its continuations
bool set()
{
return this->set_internal(detail::fake_void());
}
};
// Task type returned by local_spawn()
template<typename Sched, typename Func>
class local_task {
// Make sure the function type is callable
typedef typename std::decay<Func>::type decay_func;
static_assert(detail::is_callable<decay_func()>::value, "Invalid function type passed to local_spawn()");
// Task result type
typedef typename detail::remove_task<decltype(std::declval<decay_func>()())>::type result_type;
typedef typename detail::void_to_fake_void<result_type>::type internal_result;
// Task execution function type
typedef detail::root_exec_func<Sched, internal_result, decay_func, detail::is_task<decltype(std::declval<decay_func>()())>::value> exec_func;
// Task object embedded directly. The ref-count is initialized to 1 so it
// will never be freed using delete, only when the local_task is destroyed.
detail::task_func<Sched, exec_func, internal_result> internal_task;
// Friend access for local_spawn
template<typename S, typename F>
friend local_task<S, F> local_spawn(S& sched, F&& f);
template<typename F>
friend local_task<detail::default_scheduler_type, F> local_spawn(F&& f);
// Constructor, used by local_spawn
local_task(Sched& sched, Func&& f)
: internal_task(std::forward<Func>(f))
{
// Avoid an expensive ref-count modification since the task isn't shared yet
internal_task.add_ref_unlocked();
detail::schedule_task(sched, detail::task_ptr(&internal_task));
}
public:
// Non-movable and non-copyable
local_task(const local_task&) = delete;
local_task& operator=(const local_task&) = delete;
// Wait for the task to complete when destroying
~local_task()
{
wait();
// Now spin until the reference count drops to 1, since the scheduler
// may still have a reference to the task.
while (!internal_task.is_unique_ref(std::memory_order_acquire)) {
#if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140612
// Some versions of libstdc++ (4.7 and below) don't include a
// definition of std::this_thread::yield().
sched_yield();
#else
std::this_thread::yield();
#endif
}
}
// Query whether the task has finished executing
bool ready() const
{
return internal_task.ready();
}
// Query whether the task has been canceled with an exception
bool canceled() const
{
return internal_task.state.load(std::memory_order_acquire) == detail::task_state::canceled;
}
// Wait for the task to complete
void wait()
{
internal_task.wait();
}
// Get the result of the task
result_type get()
{
internal_task.wait_and_throw();
return detail::fake_void_to_void(internal_task.get_result(task<result_type>()));
}
// Get the exception associated with a canceled task
std::exception_ptr get_exception() const
{
if (internal_task.wait() == detail::task_state::canceled)
return internal_task.get_exception();
else
return std::exception_ptr();
}
};
// Spawn a function asynchronously
#if (__cplusplus >= 201703L)
// Use std::invoke_result instead of std::result_of for C++17 or greater because std::result_of was deprecated in C++17 and removed in C++20
template<typename Sched, typename Func>
task<typename detail::remove_task<std::invoke_result_t<std::decay_t<Func>>>::type> spawn(Sched& sched, Func&& f)
#else
// 如果 Func 是一个函数类型(比如 void(int)),则 std::decay<Func>::type 会变成一个对应的函数指针类型(比如 void (*)(int))
// 这个返回其实是一个task<Result> 这样一个对象,这其中包含了任务,执行结果等信息
// 这个模板的函数的作用是用于创建并调度一个异步任务。
template<typename Sched, typename Func>
task<typename detail::remove_task<typename std::result_of<typename std::decay<Func>::type()>::type>::type> spawn(Sched& sched, Func&& f)
#endif
{
// Using result_of in the function return type to work around bugs in the Intel
// C++ compiler.
// Make sure the function type is callable
typedef typename std::decay<Func>::type decay_func;
static_assert(detail::is_callable<decay_func()>::value, "Invalid function type passed to spawn()");
// Create task
typedef typename detail::void_to_fake_void<typename detail::remove_task<decltype(std::declval<decay_func>()())>::type>::type internal_result;
typedef detail::root_exec_func<Sched, internal_result, decay_func, detail::is_task<decltype(std::declval<decay_func>()())>::value> exec_func;
task<typename detail::remove_task<decltype(std::declval<decay_func>()())>::type> out;
detail::set_internal_task(out, detail::task_ptr(new detail::task_func<Sched, exec_func, internal_result>(std::forward<Func>(f))));
// Avoid an expensive ref-count modification since the task isn't shared yet
detail::get_internal_task(out)->add_ref_unlocked();
detail::schedule_task(sched, detail::task_ptr(detail::get_internal_task(out)));
return out;
}
// 使用默认的调度器,返回值类型是使用decltype进行推导的
template<typename Func>
decltype(async::spawn(::async::default_scheduler(), std::declval<Func>())) spawn(Func&& f)
{
return async::spawn(::async::default_scheduler(), std::forward<Func>(f));
}
// Create a completed task containing a value
// make_task 这些函数用于创建已经完成的任务,并将结果或异常存储在任务对象中。
// 我认为目的是为了创建一个统一的对象,将结果放到对应位置,然后返回
template<typename T>
task<typename std::decay<T>::type> make_task(T&& value)
{
task<typename std::decay<T>::type> out;
detail::set_internal_task(out, detail::task_ptr(new detail::task_result<typename std::decay<T>::type>));
detail::get_internal_task(out)->set_result(std::forward<T>(value));
detail::get_internal_task(out)->state.store(detail::task_state::completed, std::memory_order_relaxed);
return out;
}
template<typename T>
task<T&> make_task(std::reference_wrapper<T> value)
{
task<T&> out;
detail::set_internal_task(out, detail::task_ptr(new detail::task_result<T&>));
detail::get_internal_task(out)->set_result(value.get());
detail::get_internal_task(out)->state.store(detail::task_state::completed, std::memory_order_relaxed);
return out;
}
inline task<void> make_task()
{
task<void> out;
detail::set_internal_task(out, detail::task_ptr(new detail::task_result<detail::fake_void>));
detail::get_internal_task(out)->state.store(detail::task_state::completed, std::memory_order_relaxed);
return out;
}
// Create a canceled task containing an exception
template<typename T>
task<T> make_exception_task(std::exception_ptr except)
{
task<T> out;
detail::set_internal_task(out, detail::task_ptr(new detail::task_result<typename detail::void_to_fake_void<T>::type>));
detail::get_internal_task(out)->set_exception(std::move(except));
detail::get_internal_task(out)->state.store(detail::task_state::canceled, std::memory_order_relaxed);
return out;
}
// Spawn a very limited task which is restricted to the current function and
// joins on destruction. Because local_task is not movable, the result must
// be captured in a reference, like this:
// auto&& x = local_spawn(...);
template<typename Sched, typename Func>
#ifdef __GNUC__
__attribute__((warn_unused_result))
#endif
// 局部任务与普通任务不同,局部任务的生命周期受限于当前函数,任务对象在创建后不能移动。
// 局部任务通常用于在当前函数范围内执行一个任务,且确保任务在函数退出时完成。
local_task<Sched, Func> local_spawn(Sched& sched, Func&& f)
{
// Since local_task is not movable, we construct it in-place and let the
// caller extend the lifetime of the returned object using a reference.
return {sched, std::forward<Func>(f)};
}
template<typename Func>
#ifdef __GNUC__
__attribute__((warn_unused_result))
#endif
local_task<detail::default_scheduler_type, Func> local_spawn(Func&& f)
{
return {::async::default_scheduler(), std::forward<Func>(f)};
}