分布式ID—雪花算法

news2025/1/12 13:29:46

背景

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法
SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
  • 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。


算法实现

package util;
 
import java.util.Date;
 
/**
 * @ClassName: SnowFlakeUtil
 * @Author: jiaoxian
 * @Date: 2022/4/24 16:34
 * @Description:
 */
public class SnowFlakeUtil {
 
    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }
 
    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    // 1650789964886:2022-04-24 16:45:59
    private static final long INIT_EPOCH = 1650789964886L;
 
    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;
 
    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;
 
    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;
 
    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);
 
    // dataCenterId
    private long dataCenterId;
 
    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;
 
    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);
 
    // workId
    private long workerId;
 
    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;
 
    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
 
    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;
 
    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;
 
    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;
 
    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;
 
    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        this(1, 1);
    }
 
    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }
 
    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }
 
    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                // 数据中心部分
                | (dataCenterId << DATA_CENTER_ID_SHIFT)
                // 机器表示部分
                | (workerId << WORK_ID_SHIFT)
                // 序列号部分
                | sequence;
    }
 
    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }
 
    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);
    }
 
    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }
 
    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();
        System.out.println(id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println(time);
        System.out.println(getRandomStr());
 
    }
 
}

算法优缺点

雪花算法有以下几个优点:

  • 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
  • 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
  • 不依赖第三方库或者中间件。
  • 算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

  • 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2275503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaEE之定时器及自我实现

在生活当中&#xff0c;有很多事情&#xff0c;我们不是立马就去做&#xff0c;而是在规定了时间之后&#xff0c;在到该时间时&#xff0c;再去执行&#xff0c;比如&#xff1a;闹钟、定时关机等等&#xff0c;在程序的世界中&#xff0c;有些代码也不是立刻执行&#xff0c;…

深入Android架构(从线程到AIDL)_23 活用IBinder接口于近程通信01

1、 在同一进程里活用IBinder接口 议题 1. myActivity对象是谁创建的呢? 2. myService对象是谁创建的呢? 3. 当myService类里有个f1()函数&#xff0c;如何去调用它呢? 4. 必须先取得myService对象的指针&#xff0c;才能调用f1()函数去存取对象的属性(Attribute)值。 …

vue3后台系统动态路由实现

动态路由的流程&#xff1a;用户登录之后拿到用户信息和token&#xff0c;再去请求后端给的动态路由表&#xff0c;前端处理路由格式为vue路由格式。 1&#xff09;拿到用户信息里面的角色之后再去请求路由表&#xff0c;返回的路由为tree格式 后端返回路由如下&#xff1a; …

如何开启苹果手机(IOS)系统的开发者模式?

如何开启开发者模式&#xff1f; 一、打开设置二、隐私与安全性三、找到开发者模式四、开启开发者模式------------------------------------------------------------如果发现没有开发者模式的选项一、电脑下载爱思助手二、连接手机三、工具箱——虚拟定位——打开虚拟定位——…

国产编辑器EverEdit - 扩展脚本:在当前文件目录下新建同类型文件

1 扩展脚本&#xff1a;在当前文件目录下新建同类型文件 1.1 应用场景 用户在进行编程语言学习时&#xff0c;比如&#xff1a;Python&#xff0c;经常做完一个小练习后&#xff0c;又需要新建一个文件&#xff0c;在新建文件的时候&#xff0c;不但要选择文件类型&#xff0c…

011:利用大津算法完成图片分割

本文为合集收录&#xff0c;欢迎查看合集/专栏链接进行全部合集的系统学习。 合集完整版请参考这里。 上一篇文章介绍了大津算法可以完成图片的前景和背景分割。 总的来说&#xff0c;大津算法的核心思想就两个&#xff1a; 数学上&#xff0c;通过确定一个像素阈值&#xf…

Jenkins触发器--在其他项目执行后构建

前言&#xff1a; jenkins中有多种触发器可用&#xff0c;可以方便的控制构建的启动 这里简单介绍下项目后构建的配置方法 1. 解释&#xff1a; Build after other projects are built Set up a trigger so that when some other projects finish building, a new build is…

PowerApps助力PowerBI实现数据写回

原文发布日期: 2019-08-01 06:03:50 0000 注&#xff1a;本文旨在介绍Power BI如何利用PowerApps实现用户在前端对数据源进行增删查改&#xff0c;关于此&#xff0c;你也可以在Google上找到更详细但较零散的资料 正文 在SSAS多维数据集中&#xff0c;开发者可以给数据开启&q…

oracle 19c安装

文章目录 一 环境配置1、更换yum源2、文件配置 二 oracle环境配置1、下载依赖包2、创建用户和用户组3、创建目录并赋予权限4、修改资源限制参数5、修改内核参数6、配置安全7、配置Oracle环境变量 三 安装Oracle数据库四 创建Oracle实例五 启动数据库 一 环境配置 1、更换yum源…

LabVIEW启动时Access Violation 0xC0000005错误

问题描述 在启动LabVIEW时&#xff0c;可能出现程序崩溃并提示以下错误&#xff1a;Error 0xC0000005 (Access Violation) ​ Access Violation错误通常是由于权限不足、文件冲突或驱动问题引起的。以下是解决此问题的全面优化方案&#xff1a; 解决步骤 1. 以管理员身份运行…

xilinx平台使用多个 FIFO 拼接

Xilinx FIFO IP 输入 的最大位宽 是 1024 bit &#xff0c;当需要缓存的数据是 1280bit 又或者是 1536等 。怎么办呢&#xff1f; 有一个办法就是拆数据&#xff0c;将1280拆5个 256bit输入&#xff0c;也就是可以使用 5个 256位宽输入的FIFO拼接起来。&#xff08;其它位宽也…

Ceph分布式存储集群,不仅仅是一个简单的对象存储解决方案

Ceph 作为 OpenStack 的存储后端 块存储&#xff08;Cinder 后端&#xff09; Ceph 的 RBD&#xff08;RADOS Block Device&#xff09;模块作为 OpenStack Cinder 服务的后端&#xff0c;为虚拟机提供块级别的存储资源。RBD 支持快照、克隆和恢复等功能&#xff0c;能够满足虚…

SD ComfyUI工作流 老照片修复上色

文章目录 老照片修复上色SD模型Node节点工作流程开发与应用效果展示老照片修复上色 该工作流专门设计用于老照片的修复和上色,通过一系列高级的图像处理技术,包括深度图预处理、面部修复、上色和图像放大等步骤,来恢复老照片的质量并增加色彩。首先,工作流加载老照片并进行…

Jmeter-压测时接口如何按照顺序执行

Jmeter-压测时接口如何按照顺序执行-临界部分控制器 在进行压力测试时&#xff0c;需要按照顺序进行压测&#xff0c;比如按照接口1、接口2、接口3、接口4 进行执行 查询结果是很混乱的&#xff0c;如果请求次数少&#xff0c;可能会按照顺序执行&#xff0c;但是随着次数增加…

Mysql--运维篇--日志管理(连接层,SQL层,存储引擎层,文件存储层)

MySQL提供了多种日志类型&#xff0c;用于记录不同的活动和事件。这些日志对于数据库的管理、故障排除、性能优化和安全审计非常重要。 一、错误日志 (Error Log) 作用&#xff1a; 记录MySQL服务器启动、运行和停止期间遇到的问题和错误信息。 查看&#xff1a; 默认情况下…

【2025 Rust学习 --- 13 闭包:Rust的Lambda】

Rust的Lambda — 闭包 对整型向量进行排序很容易&#xff1a; integers.sort(); 遗憾的是&#xff0c;当我们想对一些数据进行排序时&#xff0c;它们几乎从来都不是整型向量。例 如&#xff0c;对某种记录型数据来说&#xff0c;内置的 sort 方法一般不适用&#xff1a; st…

鸿蒙面试 2025-01-09

鸿蒙分布式理念&#xff1f;&#xff08;个人认为理解就好&#xff09; 鸿蒙操作系统的分布式理念主要体现在其独特的“流转”能力和相关的分布式操作上。在鸿蒙系统中&#xff0c;“流转”是指涉多端的分布式操作&#xff0c;它打破了设备之间的界限&#xff0c;实现了多设备…

一个基于Spring Boot的智慧养老平台

以下是一个基于Spring Boot的智慧养老平台的案例代码。这个平台包括老人信息管理、健康监测、紧急呼叫、服务预约等功能。代码结构清晰&#xff0c;适合初学者学习和参考。 1. 项目结构 src/main/java/com/example/smartelderlycare├── controller│ ├── ElderlyCon…

Taro+react 开发第一节创建 带有redux状态管理的项目

Taro 项目基于 node&#xff0c;请确保已具备较新的 node 环境&#xff08;>16.20.0&#xff09;&#xff0c;推荐使用 node 版本管理工具 nvm 来管理 node&#xff0c;这样不仅可以很方便地切换 node 版本&#xff0c;而且全局安装时候也不用加 sudo 了。 1.安装 npm inf…

云商城--基础数据处理和分布式文件存储

第2章 基础数据处理和分布式文件存储 1.分布式文件存储系统Ceph学习 ​ 1).掌握Ceph架构 ​ 2).掌握Ceph组件 ​ 3).搭建Ceph集群(了解) 2.Ceph使用 ​ 1).基于Ceph实现文件上传 ​ 2).基于Ceph实现文件下载 3.SKU、SPU管理 ​ 1).掌握SKU和SPU关系 ​ 2).理解商品发…