20250110_ PyTorch中的张量操作

news2025/1/11 6:06:10

文章目录

  • 前言
  • 1、torch.cat 函数
  • 2、索引、维度扩展和张量的广播
  • 3、切片操作
    • 3.1、 encoded_first_node
    • 3.2、probs
  • 4、长难代码分析
    • 4.1、selected
      • 4.1.1、multinomial(1)工作原理:
  • 总结


前言


1、torch.cat 函数

torch.cat 函数将两个张量拼接起来,具体地是在第三个维度(dim=2)上进行拼接。注:dim取值范围是0~2

node_xy_demand = torch.cat((node_xy, node_demand[:, :, None]), dim=2)

其中所用参数为:

node_xy = reset_state.node_xy
# shape: (batch, problem, 2)
node_demand = reset_state.node_demand
# shape: (batch, problem)

若要拼接node_xy 与node_demand 需要将node_demand 进行维度拓展node_demand[:, :, None])

node_xy = torch.tensor([[[1, 2], [3, 4]], 
						[[5, 6], [7, 8]]])
node_demand = torch.tensor([[[10], [20]], 
							[[30], [40]]])
node_xy_demand = torch.tensor([[[ 1,  2, 10], [ 3,  4, 20]],
                               [[ 5,  6, 30], [ 7,  8, 40]]])


2、索引、维度扩展和张量的广播

_ = self.decoder.regret_embedding[None, None, :].expand(encoded_nodes.size(0), 1, self.decoder.regret_embedding.size(-1))
  • self.decoder.regret_embedding是一个张量。
  • self.decoder.regret_embedding[None, None, :]增加regret_embedding的维度。维度扩展成 (1, 1, D)
.expand(encoded_nodes.size(0), 1, self.decoder.regret_embedding.size(-1))
  • expand 用来沿特定维度复制张量,以实现广播。
  • encoded_nodes.size(0) 返回的是 encoded_nodes 张量的第一个维度大小。
  • 1 表示第二个维度的大小。
  • self.decoder.regret_embedding.size(-1) 返回的是 self.decoder.regret_embedding 的最后一个维度的大小,也就是嵌入的维度 D

总结: 将张量建立为所需维度在此为三维,使用expand沿着新建维度进行拓展到所需形状


3、切片操作

3.1、 encoded_first_node

 encoded_first_node = self.encoded_nodes[:, [0], :]

这行代码中的切片操作是从 self.encoded_nodes 中提取特定的数据部分:

  • : 表示选择所有批次的样本,保留第一个维度(batch)。
  • [0] 表示选择每个样本中的第一个节点,因此提取的是第一个节点的嵌入向量。
  • : 表示选择该节点的所有嵌入维度,即保留第三个维度(embedding)的所有值。

最终,经过这些操作,encoded_first_node 的形状为 (batch, 1, embedding),即每个样本只包含第一个节点的嵌入向量,保留了嵌入维度。

3.2、probs

probs[:, :, :-1]
  • 这是对 probs 张量的切片操作,作用是从 probs 的第三个维度(即最后一个维度)中移除最后一列。
selected = probs.argmax(dim=2)
  • argmax(dim=2) 表示在 probs 张量的第3维度(类别维度)上,找到每个样本中概率最大的类别索引。

  • argmax 返回的是最大值的索引,而不是最大值本身。


4、长难代码分析

4.1、selected

selected = probs.reshape(batch_size * pomo_size, -1).multinomial(1).squeeze(dim=1).reshape(batch_size, pomo_size)

prob的shape: (batch, pomo, problem+1)

  • probs.reshape(batch_size * pomo_size, -1)

    • 这一步将 probs 的形状从 (batch, pomo, problem + 1) 转变为 (batch * pomo, problem + 1)。
    • -1:表示自动推算出第二维的大小(即 problem + 1)
    • 新的形状 (batch * pomo, problem + 1)。
  • multinomial(1)

    • multinomial(1) 用于从给定的概率分布中选择一个类别。它会返回一个形状为 (batch_size * pomo_size, 1) 的张量,每一行选择一个元素的索引,代表从 probs 中选择的元素。
  • .squeeze(dim=1)

    • squeeze(dim=1) 是去除第二个维度(索引维度),将形状变为 (batch_size * pomo_size)
  • .reshape(batch_size, pomo_size)

    • 最后,通过 reshape(batch_size, pomo_size) 将张量恢复到原来的形状 (batch_size, pomo_size),即每个批次对应一个选择的元素索引。

4.1.1、multinomial(1)工作原理:

  • 输入:
    multinomial(1) 需要一个形状为 (N, C) 的张量,其中 N 是样本的数量,C 是类别的数量。这个张量表示每个样本在各个类别下的概率分布。

  • 输出:
    multinomial(1) 返回一个形状为 (N, 1) 的张量,每个元素是该样本选择的类别的索引。

具体来说,multinomial(1) 会根据每个类别的概率,从概率分布中选取一个类别。这个选择是随机的,但是会遵循给定的概率分布,即概率较大的类别被选中的几率较高,概率较小的类别被选中的几率较低。


总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2274741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mysql进阶篇

一:存储引擎 二:索引 2.1 索引概述 索引(index)帮助mysql高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用&…

《Spring Framework实战》15:4.1.4.6.方法注入

欢迎观看《Spring Framework实战》视频教程 方法注入 在大多数应用场景中,容器中的大多数bean都是单例(singletons)的。当单例bean需要与另一个单例bean协作或非单例bean需与另一非单例bean协作时,通常通过将一个bean定义为另一个…

Flutter:使用FVM安装多个Flutter SDK 版本和使用教程

一、FVM简介 FVM全称:Flutter Version Management FVM通过引用每个项目使用的Flutter SDK版本来帮助实现一致的应用程序构建。它还允许您安装多个Flutter版本,以快速验证和测试您的应用程序即将发布的Flutter版本,而无需每次等待Flutter安装。…

目标客户营销(ABM)结合开源AI智能名片2+1链动模式S2B2C商城小程序的策略与实践

摘要:在数字化营销日益盛行的今天,目标客户营销(Account Based Marketing, ABM)作为一种高度定制化的营销策略,正逐步成为企业获取高质量客户、提升市场竞争力的重要手段。与此同时,开源AI智能名片21链动模…

docker(目录挂载、卷映射)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、目录挂载1.命令2.案例3.补充 二、卷映射1.命令2.案例 总结 前言 在使用docker部署时,我们如果要改变一些配置项目,不可能每次都进入…

opencv warpAffine仿射变换C++源码分析

基于opencv 3.1.0源代码 sources\modules\imgproc\src\imgwarp.cpp void cv::warpAffine( InputArray _src, OutputArray _dst,InputArray _M0, Size dsize,int flags, int borderType, const Scalar& borderValue ) {...if( !(flags & WARP_INVERSE_MAP) ){//变换矩阵…

使用 IntelliJ IDEA 创建简单的 Java Web 项目

以下是使用 IntelliJ IDEA 创建几个简单的 Java Web 项目的步骤,每个项目实现基本的登录、注册和查看列表功能,依赖 Servlet/JSP 和基本的 Java Web 开发。 前置准备 确保安装了 IntelliJ IDEA Ultimate(社区版不支持 Web 应用)。…

R语言在森林生态研究中的魔法:结构、功能与稳定性分析——发现数据背后的生态故事!

森林生态系统结构、功能与稳定性分析与可视化研究具有多方面的重要意义,具体如下: 一、理论意义 ●深化生态学理论 通过研究森林生态系统的结构、功能与稳定性,可以深化对生态系统基本理论的理解。例如,生物多样性与生态系统稳定性…

QML states和transitions的使用

一、介绍 1、states Qml states是指在Qml中定义的一组状态(States),用于管理UI元素的状态转换和属性变化。每个状态都包含一组属性值的集合,并且可以在不同的状态间进行切换。 通过定义不同的状态,可以在不同的应用场…

Git:Cherry-Pick 的使用场景及使用流程

前面我们说了 Git合并、解决冲突、强行回退等解决方案 >> 点击查看 这里再说一下 Cherry-Pick功能,Cherry-Pick不是merge,只是把部分功能代码Cherry-Pick到远程的目标分支 git cherry-pick功能简介: git cherry-pick 是用来从一个分…

【SpringAOP】Spring AOP 底层逻辑:切点表达式与原理简明阐述

前言 🌟🌟本期讲解关于spring aop的切面表达式和自身实现原理介绍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 &am…

python基础和redis

1. Map函数 2. filter函数 numbers generate_numbers() filtered_numbers filter(lambda x: x % 2 0, numbers) for _ in range(5):print(next(filtered_numbers)) # 输出: 0 2 4 6 83. filter map 和 reduce 4. picking and unpicking 5. python 没有函数的重载&#xff0…

python-42-使用selenium-wire爬取微信公众号下的所有文章列表

文章目录 1 seleniumwire1.1 selenium-wire简介1.2 获取请求和响应信息2 操作2.1 自动获取token和cookie和agent2.3 获取所有清单3 异常解决3.1 请求url失败的问题3.2 访问链接不安全的问题4 参考附录1 seleniumwire Selenium WebDriver本身并不直接提供获取HTTP请求头(header…

Windows安装ES单机版设置密码

下载ES ES下载链接 我用的是7.17.26 启动前配置 解压之后打开D:\software\elasticsearch-7.17.26\bin\elasticsearch-env.bat 在elasticsearch-env.bat文件中修改jdk的路径 修改前 修改内容 if defined ES_JAVA_HOME (set JAVA"D:\software\elasticsearch-7.17.26\…

Java并发编程面试题:内存模型(6题)

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

标准应用 | 2025年网络安全服务成本度量实施参考

01 网络安全服务成本度量依据相关新变化 为了解决我国网络安全服务产业发展中面临的服务供需两方对于服务成本组成认知偏差较大、网络安全服务成本度量缺乏依据的问题,中国网络安全产业联盟(CCIA)组织北京赛西科技发展有限责任公司、北京安…

太速科技-FMC141-四路 250Msps 16bits AD FMC子卡

FMC141-四路 250Msps 16bits AD FMC子卡 一、产品概述: 本板卡基于 FMC 标准板卡,实现 4 路 16-bit/250Msps ADC 功能。遵循 VITA 57 标准,板卡可以直接与xilinx公司或者本公司 FPGA 载板连接使用。板卡 ADC 器件采用 ADI 公司 AD9467 芯…

通义灵码在跨领域应用拓展之物联网篇

目录 一.引言 二.通义灵码简介 三.通义灵码在物联网领域的设备端应用 1.传感器数据采集 (1).不同类型传感器的数据读取 (2).数据转换与预处理 2.设备控制指令接收和执行 (1).指令解析与处理 (2).设备动作执行 四.通义灵码在物联网领域的云端平台应用 1.数据存储和管…

使用Kubernetes部署Spring Boot项目

目录 前提条件 新建Spring Boot项目并编写一个接口 新建Maven工程 导入 Spring Boot 相关的依赖 启动项目 编写Controller 测试接口 构建镜像 打jar包 新建Dockerfile文件 Linux目录准备 上传Dockerfile和target目录到Linux 制作镜像 查看镜像 测试镜像 上传镜…

C#基础之 继承类相关构造函数使用

类构造函数 作用是为 类中成员变量进行赋值操作 单个类的时候 一般不会有什么思路问题,主要说明一下 有继承关系类的时候 当存在继承关系的类 如 A:B 首先要注意第一点:顺序 那么在构造函数时 顺序是由 B先构造 然后 A在构造 注意第二点方法…