《深度学习梯度消失问题:原因与解决之道》

news2025/1/8 19:41:54

在深度学习的训练过程中,梯度消失是一个常见且棘手的问题,它会严重影响模型的训练效果和性能。以下是对该问题的原因分析与解决办法。

梯度消失问题的原因

首先是激活函数选择不当。像Sigmoid和Tanh这类传统激活函数,在输入值较大或较小时,其导数会趋近于零。例如Sigmoid函数,导数最大值仅为0.25。在深层网络反向传播时,链式求导使得梯度经过多层后迅速变小。

其次是网络层次过深。随着网络层数增加,梯度在反向传播中需经过众多层,每一层的误差都会累积。如果每一层的梯度都小于1,那么经过多层乘积后,传递到浅层的梯度会以指数形式衰减。

最后是权重初始化不合理。如果权重初始化值过小,在反向传播中梯度信号就会很弱,无法有效更新前面层的权重。

解决梯度消失问题的方法

  • 选择合适的激活函数:ReLU激活函数在正数部分导数恒为1,能避免梯度消失,计算也简单快速。其变种如Leaky ReLU给负数部分设置了小斜率,解决了ReLU的“死亡神经元”问题;PReLU的负斜率可学习;ELU则在负数部分有更平滑的过渡,都能有效防止梯度消失。

  • 优化权重初始化方法:

Xavier初始化根据输入和输出神经元数量来确定权重初始值,适用于sigmoid等激活函数。He初始化针对ReLU及其变种,能使权重在正向和反向传播中保持合适的方差,确保梯度有效传递。

  • 采用批量归一化(Batch Normalization):它对每一层的输入进行归一化,使数据分布稳定,减少内部协变量偏移。这样一来,梯度在传播时更稳定,不易消失或爆炸,还能加快训练速度、降低对初始化的依赖。

  • 引入残差连接(Residual Connection):残差网络(ResNet)通过残差连接让梯度能直接跳过某些层传播,使网络更容易训练深层结构。模型可以学习输入与输出的差异,即使网络很深,梯度也能较好地反向传播,避免消失。

  • 使用LSTM等特殊网络结构:长短期记忆网络(LSTM)内部有复杂的门控机制,能选择性地记住和遗忘信息。在处理序列数据时,可避免传统循环神经网络(RNN)中的梯度消失问题,更好地捕捉长期依赖关系。

  • 调整学习率:采用学习率衰减策略,在训练初期用较大学习率快速收敛,后期逐渐减小,使梯度更新更稳定。自适应学习率优化器如Adam能根据梯度的一阶和二阶矩自适应调整学习率,有助于解决梯度消失问题。

  • 预训练加微调:先使用无监督学习对网络的各层进行预训练,找到较好的初始权重,再用有监督学习对整个网络进行微调。这样可以让模型在开始训练时就有一个较优的起点,减少梯度消失的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272783.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我的创作纪念日——《惊变128天》

我的创作纪念日——《惊变128天》 机缘收获日常成就憧憬 机缘 时光飞逝,转眼间,我已在这条创作之路上走过了 128 天。回顾起 2024 年 8 月 29 日,我满怀忐忑与期待,撰写了第一篇技术博客《讲解LeetCode第1题:两数之和…

stm32第一次烧录或者上电运行卡死问题分析

问题描述 单片机烧录代码(刚上电)无法立即运行,必须要复位一次或多次才能运行;跟踪调试会进入HardFault_Handler中断。 问题分析 烧录配置如下图,首先排除配置问题那么该问题就比较让人头大了,理论上&am…

YOLOV8训练好的best.pt模型转best.onnx并部署成python可调用

今天这篇博文是学习大佬作品以后,执行我的需求后的总结,做了一些代码调整,就此记录一下,非常感谢大佬提供如此好的输出。 已知yolov8 训练好的模型一般是pt格式,比如best.pt,现在我期望这个模型可以转成可以…

君正T41交叉编译ffmpeg、opencv并做h264软解,利用君正SDK做h264硬件编码

目录 1 交叉编译ffmpeg----错误解决过程,不要看 1.1 下载源码 1.2 配置 1.3 编译 安装 1.3.1 报错:libavfilter/libavfilter.so: undefined reference to fminf 1.3.2 报错:error: unknown type name HEVCContext; did you mean HEVCPr…

基于ASP.NET的动漫网站

一、系统架构与技术实现 系统架构:基于ASP.NET的MVC框架构建,实现网站的层次结构,使得网站更加易于维护和扩展。 技术实现:利用ASP.NET的技术特点,如强大的后端开发能力、丰富的UI控件等,结合前端技术如HT…

「Java 数据结构全面解读」:从基础到进阶的实战指南

「Java 数据结构全面解读」:从基础到进阶的实战指南 数据结构是程序设计中的核心部分,用于组织和管理数据。Java 提供了丰富的集合框架和工具类,涵盖了常见的数据结构如数组、链表、栈、队列和树等。本文将系统性地介绍这些数据结构的概念、…

安卓NDK视觉开发——手机拍照文档边缘检测实现方法与库封装

一、项目创建 创建NDK项目有两种方式,一种从新创建整个项目,一个在创建好的项目添加NDK接口。 1.创建NDK项目 创建 一个Native C项目: 选择包名、API版本与算法交互的语言: 选择C版本: 创建完之后,可…

MATLAB仿真:基于GS算法的经大气湍流畸变涡旋光束波前校正仿真

GS算法流程 GS(Gerchberg-Saxton)相位恢复算法是一种基于傅里叶变换的最速下降算法,可以通过输出平面和输入平面上光束的光强分布计算出光束的相位分布。图1是基于GS算法的涡旋光束畸变波前校正系统框图,在该框图中,已…

【React+TypeScript+DeepSeek】穿越时空对话机

引言 在这个数字化的时代,历史学习常常给人一种距离感。教科书中的历史人物似乎永远停留在文字里,我们无法真正理解他们的思想和智慧。如何让这些伟大的历史人物"活"起来?如何让历史学习变得生动有趣?带着这些思考&…

深入刨析数据结构之排序(上)

目录 1.内部排序 1.1概述 1.2插入排序 1.2.1其他插入排序 1.2.1.1 折半插入排序 1.2.1.2 2-路插入排序 1.3希尔排序 1.4快速排序 1.4.1起泡排序 1.4.2快速排序 1.4.2.1hoare版本 1.4.2.2挖坑版本 1.4.2.3前后指针版本 1.4.2.4优化版本 1.4.2.4.1小区间插入排序优…

AIA - APLIC之三(附APLIC处理流程图)

本文属于《 RISC-V指令集基础系列教程》之一,欢迎查看其它文章。 1 APLIC复位 APLIC复位后,其所有状态都变得有效且一致,但以下情况除外: 每个中断域的domaincfg寄存器(spec第 4.5.1 节);可能是machine-level interrupt domain的MSI地址配置寄存器(spec第4.5.3 和4.5…

openwrt 清缓存命令行

一、查看缓存 : free -m 二、清缓存:echo 3 > /proc/sys/vm/drop_caches  三、详解。 释放物理页缓存 echo 1 > /proc/sys/vm/drop_caches 释放可回收的slab对象,包含inode and dentry echo 2 > /proc/sys/vm/drop_caches 同时…

Linux -- 端口号、套接字、网络字节序、sockaddr 结构体

目录 什么是端口号? 什么是套接字? 网络字节序 struct sockaddr 结构体 什么是端口号? 我们日常上网的时候,主机其实是在进行两种操作: 1、把远端的数据拉取到本地,比如刷抖音的时候,手机向…

《数据结构》期末考试测试题【中】

《数据结构》期末考试测试题【中】 21.循环队列队空的判断条件为?22. 单链表的存储密度比1?23.单链表的那些操作的效率受链表长度的影响?24.顺序表中某元素的地址为?25.m叉树第K层的结点数为?26. 在双向循环链表某节点…

实际开发中,常见pdf|word|excel等文件的预览和下载

实际开发中,常见pdf|word|excel等文件的预览和下载 背景相关类型数据之间的转换1、File转Blob2、File转ArrayBuffer3、Blob转ArrayBuffer4、Blob转File5、ArrayBuffer转Blob6、ArrayBuffer转File 根据Blob/File类型生成可预览的Base64地址基于Blob类型的各种文件的下载各种类型…

《Opencv》基础操作详解(4)

接上篇:《Opencv》基础操作详解(3)-CSDN博客 目录 22、图像形态学操作 (1)、顶帽(原图-开运算) 公式: 应用场景: 代码示例: (2)…

大数据高级ACP学习笔记(2)

钻取:变换维度的层次,改变粒度的大小 星型模型 雪花模型 MaxCompute DataHub

尚硅谷· vue3+ts 知识点学习整理 |14h的课程(持续更ing)

vue3 主要内容 核心:ref、reactive、computed、watch、生命周期 常用:hooks、自定义ref、路由、pinia、miit 面试:组件通信、响应式相关api ----> 笔记:ts快速梳理;vue3快速上手.pdf 笔记及大纲 如下&#xff…

阻抗(Impedance)、容抗(Capacitive Reactance)、感抗(Inductive Reactance)

阻抗(Impedance)、容抗(Capacitive Reactance)、感抗(Inductive Reactance) 都是交流电路中描述电流和电压之间关系的参数,但它们的含义、单位和作用不同。下面是它们的定义和区别: …

在 SQL 中,区分 聚合列 和 非聚合列(nonaggregated column)

文章目录 1. 什么是聚合列?2. 什么是非聚合列?3. 在 GROUP BY 查询中的非聚合列问题示例解决方案 4. 为什么 only_full_group_by 要求非聚合列出现在 GROUP BY 中?5. 如何判断一个列是聚合列还是非聚合列?6. 总结 在 SQL 中&#…