基于ROS先验地图的机器人自主定位与导航SLAM

news2025/1/9 1:34:40

2021年学习,当时参加科大讯飞的智能车大赛,
【语音交互启动-teb算法路径规划+A*算法自动避障+路径最短优化+yolo5目标检测+视觉结果判断分类+终点指定点位自动泊车+语音播报。】
【讯飞学院】http://www.iflyros.com/home/

一、全局路径规划中的地图

  1. 栅格地图(Grid Map)

    • 栅格地图是将环境离散化为一系列的方格或像素,每个栅格表示空间的一个单元。
    • 每个栅格具有一个二进制值(占用/空闲)或概率值来表达其被障碍物占用的可能性。
    • 优点:简单直观,适合处理复杂的室内环境。
    • 缺点:在大尺度环境中,存储和计算成本较高。
  2. 概率图(Cost Map)

    • 成本地图扩展了栅格地图的概念,除了标识障碍物外,还考虑了其他因素如接近障碍物的距离等。
    • 每个栅格不仅有占用状态,还有成本值,用以指导路径规划算法选择最优路径。
  3. 特征地图(Feature Map)

    • 特征地图利用特定的几何或视觉特征(如直线、角点、平面)来描述环境。
    • 这种地图形式有助于减少数据量并提高地图的解析度,适用于高精度需求的场景。
  4. 拓扑地图(Topological Map)

    • 拓扑地图关注的是节点之间的连接关系而非精确的空间位置。
    • 节点可以代表房间、走廊或其他重要地点,边则表示节点间的可达性。
二、全局路径规划算法
  1. Dijkstra 算法

    • 经典最短路径算法,适用于加权图中寻找两点间最短路径。
  2. 广度优先搜索算法(BFS)

    • 非加权图中寻找最短路径的有效方法,但不适用于带权重的地图。
  3. A * 搜索算法

    • 结合启发式信息的搜索算法,用于寻找从起点到终点的最短路径。
    • 变体包括:
      • 双向 A * 搜索算法:从起点和终点同时搜索以加快查找速度。
      • 重复 A * 搜索算法:当环境发生变化时重新规划路径。
      • Anytime Repairing A (ARA) 搜索算法**:在时间有限的情况下找到满意解,并随着更多时间可用不断改进解。
      • 实时学习 A * 搜索(LRTA)算法*:适应动态变化环境的在线版本。
      • 实时适应性 A * 搜索(RTAA)算法*:结合了ARA和LRTA的优点。
  4. 动态 A * 搜索(D)算法*

    • 适用于存在动态障碍物的情况,能够在未知或部分已知环境下工作。
  5. 终身规划 A * 搜索算法

    • 一种增量式搜索算法,能够高效更新路径。
  6. Anytime D * 搜索算法

    • 分为两种情况,变动较小和变动较大,分别针对不同的环境变化程度优化路径。
  7. 快速随机搜索树(RRT)算法

    • 通过随机采样探索空间,适用于高维空间和复杂环境。
  8. 目标偏好 RRT 算法

    • 增强版RRT,增加了向目标方向生长的趋势。
  9. 双向快速扩展随机树(RRT_CONNECT)算法

    • 使用两个RRT,一个从起始点开始,另一个从目标点开始,直到它们相连。
  10. Extended_RRT 算法

    • 改进的RRT,提高了在狭窄通道中的性能。
  11. 动态 RRT 算法

    • 针对动态障碍物设计的RRT变种。
  12. 快速行进树(FMT)算法*

    • 一种基于采样的渐近最优路径规划算法。
  13. Batch Informed 树(BIT)算法*

    • 在保持渐近最优的同时,减少了样本数量。
三、局部路径规划算法
  1. 人工势场法

    • 利用虚拟力的概念引导机器人避开障碍物并向目标移动。
    • 优点:概念简单,易于实现。
    • 缺点:容易陷入局部极小值,不适合复杂环境。
  2. 动态窗口法(Dynamic Window Approach, DWA)

    • 该算法考虑到机器人的动力学约束,在可行的速度范围内寻找最佳运动指令。
    • 优点:
      • 计算复杂度低,适合实时应用。
      • 实现避障功能。
      • 适用于差分驱动和全向移动平台。
    • 缺点:
      • 前瞻性不足,难以处理复杂障碍。
      • 动态避障效果一般。
      • 不保证全局最优路径。
      • 对于阿克曼转向模型车模可能不是最佳选择。

四、传感器融合与状态估计
  • 多传感器数据融合
    • 传感器选择(激光雷达、摄像头、超声波传感器等)
    • 融合方法(加权平均、贝叶斯滤波、粒子滤波等)
  • 卡尔曼滤波器及其变种(EKF, UKF)
    • 状态预测与更新
    • 参数调整与调优
  • SLAM(Simultaneous Localization and Mapping)
    • 视觉SLAM(vSLAM)
    • 激光SLAM(LiDAR SLAM)
    • 融合SLAM(多传感器)
五、实践案例与项目
  • 开源工具链介绍
    • ROS中的navigation stack详解
    • Gazebo仿真环境使用指南
  • 实际应用场景示例
    • 室内服务机器人导航
    • 工业自动化巡检机器人
    • 自动驾驶车辆的城市道路导航
  • 项目实施步骤指南
    • 从零开始搭建一个SLAM系统
    • 数据集采集与标注
    • 性能评估与结果分析
六、高级主题
  • 深度学习在机器人导航中的应用
    • 使用卷积神经网络(CNNs)进行特征提取
    • 强化学习算法用于决策制定
  • 强化学习与自主决策
    • Q-learning, DQN, PPO等算法的应用
    • 在未知环境中探索与学习
  • 新兴技术和未来趋势
    • 边缘计算与云计算结合
    • 5G通信对机器人导航的影响
    • 量子计算潜在的应用可能性
七、特定技术集成与应用
  • 语音交互启动
    • 集成语音识别API(如Google Speech-to-Text, Amazon Alexa Voice Service)
    • 自然语言处理(NLP)以解析命令
    • 语音合成技术实现反馈播报
  • TEB算法路径规划 + A*算法自动避障
    • TEB Local Planner (Trajectory Rollout & Elastic Band) 的原理与ROS实现
    • A*搜索算法的改进与应用
    • 实时避障策略与动态障碍物处理
  • YOLOv5目标检测
    • YOLOv5训练与部署流程
    • 目标分类与跟踪
    • 结合ROS进行实时物体识别
  • 视觉结果判断分类
    • 物体检测后的语义分割
    • 基于深度学习的场景理解
  • 终点指定点位自动泊车
    • 泊车路径规划算法
    • 控制策略设计(PID控制、模型预测控制MPC)
    • 安全性与可靠性保障措施
  • 语音播报
    • 文本到语音转换(TTS)技术
    • 实现人性化的用户交互体验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272546.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《Python游戏编程入门》注-第9章8

2 游戏信息的显示 在游戏窗口的上部会显示游戏分数、游戏关卡、剩余砖块数以及剩余小球数等信息,如图12所示。 图12 游戏信息显示 使用如图13所示的代码实现以上功能。 图13 显示游戏信息的代码 其中,print_text()函数MyLibrary.

idea插件之 translation翻译插件

文章目录 1. translation翻译插件2. 效果图3. 延伸(默认自动配置微软翻译) 1. translation翻译插件 Settings 》Plugins 》Translation PS:安装后需要重启idea。 2. 效果图 右键选择插件,或者ctrlshifty 直接翻译代码。 3. 延伸…

Infineon PSoC 4 CapSense ModusToolbox IDE - 系统生态篇

本文档说明了 ModusToolbox 软体环境的 4 个层面,该环境为 CapSense 设备和生态系统提供支援。本文是 Infineon PSoC 4 CapSense ModusToolbox IDE-系统介绍的延伸篇 (Infineon PSoC 4 CapSense ModusToolbox IDE -系统介绍篇 - 大大通(简体站))。 什么是ModusToolb…

PyCharm+RobotFramework框架实现UDS自动化测试——(一)python-can 库的安装与环境配置

从0开始学习CANoe使用 从0开始学习车载测试 相信时间的力量 星光不负赶路者,时光不负有心人。 文章目录 1. 概述2.安装 python-can 库—基于pycharm在对应的工程下3. 在任意盘中安装环境4. 导入 can 模块语法5. 配置 CAN 接口6.CANoe设备连接语法 1. 概述 本专栏主…

springCloud实战

一、Feign的实战 1、使用 1.1步骤 ①引入feign依赖 ②在启动类上加上EnableFeignClients注解,开启Feign客户端 ③编写FeignClient接口 1.2开启feign调用日志 只需在yml配置文件中开启配置即可 feign:client:default:loggerLevel: FULL #feign接口被调用时的…

DINO-X环境搭建推理测试

引子 开放世界检测,前文也写OV-DINO(感兴趣的童鞋,请移步OV-DINO开放词检测环境安装与推理-CSDN博客)。这不,DINO系列又更新了。OK,那就让我们开始吧。 一、模型介绍 IDEA 开发了一个通用物体提示来支持无…

List ---- 模拟实现LIST功能的发现

目录 listlist概念 list 中的迭代器list迭代器知识const迭代器写法list访问自定义类型 附录代码 list list概念 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素…

STM32-笔记37-吸烟室管控系统项目

一、项目需求 1. 使用 mq-2 获取环境烟雾值,并显示在 LCD1602 上; 2. 按键修改阈值,并显示在 LCD1602 上; 3. 烟雾值超过阈值时,蜂鸣器长响,风扇打开;烟雾值小于阈值时,蜂鸣器不响…

VUE3配置后端地址,实现前后端分离及开发、正式环境分离

新建.env.development及.env.production .env.development 指定开发环境地址.env.production 指定生产环境地址 格式如下 VITE_APP_BASE_APIhttp://localhost:8070只需要在对应文件写入对应的后端地址即可 修改env.d.ts /// <reference types"vite/client" /…

win32汇编环境,在窗口程序中画五边形与六边形

;运行效果 ;win32汇编环境,在窗口程序中画五边形与六边形 ;展示五边形与六边形的画法 ;将代码复制进radasm软件里,直接编译可运行.重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>>>>>>>>…

Java Web开发进阶——Spring Boot基础

Spring Boot是基于Spring框架的新一代开发框架&#xff0c;旨在通过自动化配置和简化的开发方式提升生产效率。它将复杂的配置抽象化&#xff0c;让开发者专注于业务逻辑实现&#xff0c;而无需关注繁琐的基础配置。 1. Spring Boot简介与优势 Spring Boot 是 Spring 家族中的…

【Linux】文件系统命令

目录 文件系统命令 Linux文件系统 文件操作相关命令 文件系统命令 磁盘文件系统&#xff1a;指本地主机中实际可以访问到的文件系统&#xff0c;包括硬盘、CD-ROM、DVD、USB存储器、磁盘阵列等。常见文件系统格式有&#xff1a;autofs、coda、Ext&#xff08;Extended File…

关于变电站及线路接线情况展示的一些想法

以前总项目的时候总习惯于给变电站画个轮廓和接线点&#xff0c;要不就是给变电站3D建模。费时、费力效果还不一定好!其实&#xff0c;像上图一样线路搭配高清影像效果是不是会更好&#xff1f;尤其变电站区域可以使用航飞0.2米左右的数据&#xff0c;基本上站内设备都能看清了…

【OceanBase】使用 Superset 连接 OceanBase 数据库并进行数据可视化分析

文章目录 前言一、前提条件二、操作步骤2.1 准备云主机实例2.2 安装docker-compose2.3 使用docker-compose安装Superset2.3.1 克隆 Superset 的 GitHub 存储库2.3.2 通过 Docker Compose 启动 Superset 2.4 开通 OB Cloud 云数据库2.5 获取连接串2.6 使用 Superset 连接 OceanB…

开源平台Kubernetes的优势是什么?

Kubernetes 是一个可移植、可扩展的开源平台&#xff0c;用于管理容器化的工作负载和服务&#xff0c;方便进行声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统&#xff0c;其服务、支持和工具的使用范围广泛。 Kubernetes 这个名字源于希腊语&#xff0c;意…

“大数据+职业本科”:VR虚拟仿真实训室的发展前景

在新时代背景下&#xff0c;随着科技的飞速进步和产业结构的不断升级&#xff0c;职业教育正迎来前所未有的变革。“大数据职业本科”的新型教育模式&#xff0c;结合VR&#xff08;虚拟现实&#xff09;技术的广泛应用&#xff0c;为实训教学开辟了崭新的道路&#xff0c;尤其…

flask实现国外大学生志愿者管理服务系统【英文】

完整源码项目包获取→点击文章末尾名片&#xff01;

lambda用法及其原理

目录 lambda形式lambda用法1.sort降序2.swap3.捕捉列表 习题解题 lambda形式 [capture-list](parameters)->return type{function boby}[capture-list]&#xff1a;[捕捉列表]用于捕捉函数外的参数&#xff0c;可以为空&#xff0c;但不能省略&#xff1b;(parameters) &am…

Street Surf 的学习

数据结构和组织 定义了一个 scenebank 的 数据结构。 这篇文章定义了两种 采样 方式&#xff1a; JointFramePixelDataset 【任意帧中选择任意的 Pixel】PixelDataset [从固定的帧中选择任意的Pixel]ImagePatchDataset [基于image patch 的采样方式&#xff0c;可以用于 mono…

IP查询于访问控制保护你我安全

IP地址查询 查询方法&#xff1a; 命令行工具&#xff1a; ①在Windows系统中&#xff0c;我们可以使用命令提示符&#xff08;WINR&#xff09;查询IP地址&#xff0c;在弹窗中输入“ipconfig”命令查看本地网络适配器的IP地址等配置信息&#xff1b; ②在Linux系统中&…