详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)

news2025/1/8 4:53:34

GPT-3 FAMILY LARGE LANGUAGE MODELS

Information Extraction

自然语言处理信息提取任务(NLP-IE):从非结构化文本数据中提取结构化数据,例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处理、知识发现、决策制定并增强信息检索和搜索。

Information Extraction 子任务

信息抽取任务多种多样[153]:

  1. 实体类型(entity typing)
  2. 实体提取(entity extraction)
  3. 关系分类(relation classification)
  4. 关系提取(relation extraction)
  5. 事件检测(event detection)
  6. 事件参数提取(event argument extraction )
  7. 事件提取 (event extraction)

Entity typing (ET):classifying identified named entity mentions into one of the predefined entity types [165].

Named Entity Recognition (NER):identifying entity mentions and then assigning them to appropriate entity types [166].

Relation classification (RC):identifying the semantic relationship between the given two target entities in a sentence [167].

Relation Extraction (RE):extracting the entities and then classifying the semantic relationship between the two target entities, i.e., involves entity extraction followed by relation classification [168].

Event Detection (ED):aims to identify and categorize words or phrases that trigger events [169].

Event Argument Extraction (EAE):identifying event arguments, i.e., entities involved in the event and then classifying their roles [170].

Event Extraction (EE):aims to extract both the events and the involved entities, i.e., it involves event detection followed by event argument extraction [171].

GPT relation classification 任务

[138], [149], [153]–[156], [163]

[138] Y. Wang, Y. Zhao, and L. Petzold, “Are large language models ready for healthcare? a comparative study on clinical language understanding,” arXiv preprint arXiv:2304.05368, 2023.  chain-of-thought (CoT)  self-question prompting (SQP)

链接:https://proceedings.mlr.press/v219/wang23c/wang23c.pdf

[149] B. J. Gutie ́rrez, N. McNeal, C. Washington, Y. Chen, L. Li, H. Sun, and Y. Su, “Thinking about gpt-3 in-context learning for biomedical ie? think again,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 4497–4512.

链接:https://arxiv.org/pdf/2203.08410

[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.  

链接:https://arxiv.org/pdf/2304.11633

[154] C. Chan, J. Cheng, W. Wang, Y. Jiang, T. Fang, X. Liu, and Y. Song, “Chatgpt evaluation on sentence level relations: A focus on temporal, causal, and discourse relations,” arXiv preprint arXiv:2304.14827, 2023.  

链接:https://arxiv.org/pdf/2304.14827

[155] X. Xu, Y. Zhu, X. Wang, and N. Zhang, “How to unleash the power of large language models for few-shot relation extraction?” arXiv preprint arXiv:2305.01555, 2023.  

链接:https://arxiv.org/pdf/2305.01555

[156] Z. Wan, F. Cheng, Z. Mao, Q. Liu, H. Song, J. Li, and S. Kurohashi, “Gpt-re: In-context learning for relation extraction using large language models,” arXiv preprint arXiv:2305.02105, 2023. chain-of-thought (CoT)

链接:https://arxiv.org/pdf/2305.02105

[163] K. Zhang, B. J. Gutie ́rrez, and Y. Su, “Aligning instruction tasks unlocks large language models as zero-shot relation extractors,” arXiv preprint arXiv:2305.11159, 2023.

链接:https://arxiv.org/pdf/2305.11159

GPT relation extraction 任务

[148], [151]–[153], [158], [161], [162],

[148] X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S. Huang, P. Xie, J. Xu, Y. Chen, M. Zhang et al., “Zero-shot information extraction via chatting with chatgpt,” arXiv preprint arXiv:2302.10205, 2023.

链接:https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/ChatIE_Zero-Shot%20Information%20Extraction%20via%20Chatting%20with%20ChatGPT.pdf

[151] H. Rehana, N. B. C ̧ am, M. Basmaci, Y. He, A.  ̈Ozgu ̈ r, and J. Hur, “Evaluation of gpt and bert-based models on identifying protein-protein interactions in biomedical text,” arXiv preprint arXiv:2303.17728, 2023.  

链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11101131/pdf/nihpp-2303.17728v2.pdf

[152] C. Yuan, Q. Xie, and S. Ananiadou, “Zero-shot temporal relation extraction with chatgpt,” arXiv preprint arXiv:2304.05454, 2023. chain-of-thought (CoT)  event ranking (ER)

链接:https://arxiv.org/pdf/2304.05454

[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.

链接:https://arxiv.org/pdf/2304.11633

[158] Y. Ma, Y. Cao, Y. Hong, and A. Sun, “Large language model is not a good few-shot information extractor, but a good reranker for hard samples!” arXiv preprint arXiv:2303.08559, 2023.

链接:https://arxiv.org/pdf/2303.08559

[161] S. Wadhwa, S. Amir, and B. C. Wallace, “Revisiting relation extraction in the era of large language models,” arXiv preprint arXiv:2305.05003, 2023. chain-of-thought (CoT)

链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10482322/pdf/nihms-1912166.pdf

[162] P. Li, T. Sun, Q. Tang, H. Yan, Y. Wu, X. Huang, and X. Qiu, “Codeie: Large code generation models are better few-shot information extractors,” arXiv preprint arXiv:2305.05711, 2023.

链接:https://arxiv.org/pdf/2305.05711

Summary

参考文献

[164] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, and H. Wu, “Unified structure generation for universal information extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 5755–5772.

[165] Y. Chen, J. Cheng, H. Jiang, L. Liu, H. Zhang, S. Shi, and R. Xu, “Learning from sibling mentions with scalable graph inference in fine-grained entity typing,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 2076–2087.

[166] S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang, “Container: Few-shot named entity recognition via contrastive learning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6338–6353.

[167] S. Wu and Y. He, “Enriching pre-trained language model with entity information for relation classification,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 2361–2364.

[168] D. Ye, Y. Lin, P. Li, and M. Sun, “Packed levitated marker for entity and relation extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 4904–4917.

[169] K. Zhao, X. Jin, L. Bai, J. Guo, and X. Cheng, “Knowledgeenhanced self-supervised prototypical network for few-shot event detection,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 6266–6275.  

[170] Y. Ma, Z. Wang, Y. Cao, M. Li, M. Chen, K. Wang, and J. Shao, “Prompt for extraction? paie: Prompting argument interaction for event argument extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6759–6774.

[1] A Survey of GPT-3 Family Large Language  Models Including ChatGPT and GPT-4. 2023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272435.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云备份项目--服务端编写

文章目录 7. 数据管理模块7.1 如何设计7.2 完整的类 8. 热点管理8.1 如何设计8.2 完整的类 9. 业务处理模块9.1 如何设计9.2 完整的类9.3 测试9.3.1 测试展示功能 完整的代码–gitee链接 7. 数据管理模块 TODO: 读写锁?普通锁? 7.1 如何设计 需要管理…

Flink operator实现自动扩缩容

官网文档位置: 1.Autoscaler | Apache Flink Kubernetes Operator 2.Configuration | Apache Flink Kubernetes Operator 1.部署K8S集群 可参照我之前的文章k8s集群搭建 2.Helm安装Flink-Operator helm repo add flink-operator-repo https://downloads.apach…

使用LINUX的dd命令制作自己的img镜像

为了避免重复安装同一镜像,配置环境,首先我准备一个正常使用的完整系统。 使用Gparted软件先将母盘(如U盘,TF卡)分区调整为只有数据的大小。如:60G的TF卡,只用了3.5G,将未使用的空间…

【Unity3D】LOD Group 多细节层次(CrossFade淡出淡入效果)

新建一个空物体挂载LOD Group脚本 LOD0(球体) LOD1(立方体) LOD2(单面板Quad) 可发现我勾选了Cross Fade并没有渐隐效果,是因为Shader是不透明的,不支持。 经过如下修改后支持Cros…

【2025年最新】OpenWrt 更换国内源的指南(图形界面版)

在上一篇文章中我们讲解了如何使用命令行更换国内源,如果你没有终端工具,或者不喜欢命令行,那么图形界面方式将会是更简单有效的方式。 命令行版本:【2025年最新】OpenWrt 更换国内源的指南(命令行)-CSDN博客 为什么选择通过图形…

Jdk动态代理源码缓存优化比较(JDK17比JDK8)

目录 JDK 8的缓存实现 JDK 17的缓存实现 优化比较 总结实际应用影响 JDK 8的缓存实现 // JDK 8 private static final WeakCache<ClassLoader, Class<?>[], Class<?>> proxyClassCache new WeakCache<>(new KeyFactory(), new ProxyClassFact…

移动电商的崛起与革新:以开源AI智能名片2+1链动模式S2B2C商城小程序为例的深度剖析

摘要&#xff1a;本文旨在探讨移动电商的崛起背景、特点及其对传统电商模式的革新影响&#xff0c;并以开源AI智能名片21链动模式S2B2C商城小程序为具体案例&#xff0c;深入分析其在移动电商领域的创新实践。随着移动互联网技术的飞速发展&#xff0c;移动电商已成为电商行业的…

【计算机网络】课程 实验三 跨交换机实现 VLAN 间路由

实验 3 跨交换机实现 VLAN 间路由 一、实验目的 1&#xff0e;理解跨交换机之间VLAN的特点。 2&#xff0e;掌握如何在交换机上划分基于端口的VLAN&#xff0c;给VLAN内添加端口。 3&#xff0e;利用三层交换机跨交换机实现 VLAN 间路由。 二、实验分析与设计 【背景描述…

计算机网络——数据链路层-介质访问控制

一、介质访问控制方法 在局域网中, 介质访问控制(medium access control)简称MAC&#xff0c;也就是信道访问控制方法&#xff0c;可以 简单的把它理解为如何控制网络节点何时发送数据、如何传输数据以及怎样在介质上接收数据&#xff0c; 是解决当局域网中共用信道的使用产生竞…

121.【C语言】数据结构之快速排序(未优化的Hoare排序存在的问题)以及时间复杂度的分析

目录 1.未优化的Hoare排序存在的问题 测试代码 "量身定制"的测试代码1 运行结果 "量身定制"的测试代码2 运行结果 "量身定制"的测试代码3 运行结果 分析代码1、2和3栈溢出的原因 排有序数组的分析 分析测试代码1:给一个升序数组,要求排…

【操作系统不挂科】操作系统期末考试卷<2>(单选题&简答题&计算与分析题&程序分析题&应用题)

前言 大家好吖&#xff0c;欢迎来到 YY 滴 操作系统不挂科 系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 本章为系列题库&#xff0c;其他章节看下面传送门其他博客 【操作系统不挂科】&#xff1c;操作系统概论&#xff08;1&#xff09;&#xff1e…

解密人工智能:如何改变我们的工作与生活

引言&#xff1a;AI崛起背后的思考 在过去的几十年里&#xff0c;人工智能&#xff08;AI&#xff09;从科幻小说中的神秘存在&#xff0c;逐渐走进了我们的日常生活。无论是智能手机的语音助手&#xff0c;还是推荐心仪商品的电商平台&#xff0c;AI技术已悄然融入工作与生活的…

LLM - 使用 LLaMA-Factory 部署大模型 HTTP 多模态服务 教程 (4)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144881432 大模型的 HTTP 服务,通过网络接口,提供 AI 模型功能的服务,允许通过发送 HTTP 请求,交互大模型,通常基于云计算架构,无需在本地部署复杂的模型和硬件,…

Chapter 1 Understanding Large Language Models

文章目录 Understanding Large Language ModelsWhat is an LLM?Applications of LLMSStages of building and using LLMsUsing LLMS for different tasksA closer look at the GPT architectureBuilding a large language modelSummary Understanding Large Language Models …

游戏社交趋势下,游戏语音再升级!

如今&#xff0c;游戏已成为我们社交生活的一个重要娱乐方式&#xff0c;春节临近&#xff0c;与亲朋好友一起畅玩“开黑”无疑是节假日的一大乐趣。在游戏社交互动中&#xff0c;“游戏语音”不可或缺。在传统游戏语音领域&#xff0c;多人在线游戏如 MOBA、FPS 和 MMORPG 的实…

CTFshow—远程命令执行

29-35 Web29 代码利用正则匹配过滤了flag&#xff0c;后面加了/i所以不区分大小写。 可以利用通配符绕过 匹配任何字符串&#xff0f;文本&#xff0c;包括空字符串&#xff1b;*代表任意字符&#xff08;0个或多个&#xff09; ls file * ? 匹配任何一个字符&#xff08;不…

Elasticsearch 入门教程

掌握Elasticsearch&#xff1a;从入门到入门 一、ES 背景1.1 ElasticSearch 的背景1.2 ElasticSearch 的应用场景 二、ES 简介2.1 ElasticSearch 简介2.2 ElasticSearch 的定义与特点2.3 ElasticSearch 与传统数据库的区别2.4 ElasticSearch 的优势和劣势 三、ES 的核心概念3.1…

【Vue学习】Vue 组件实例的生命周期(四个阶段,八个钩子)

一、为什么要理解生命周期&#xff1f; 理解生命周期就像是知道了一部电影的剧情走向&#xff0c;能让你在适当的时机做出反应。Vue 生命周期的钩子让你可以在不同的阶段插入你的逻辑&#xff0c;像是提前准备、后期清理或者在数据更新时做点事情。这种“精确控制”的能力会让你…

【Vim Masterclass 笔记08】第 6 章:Vim 中的文本变换及替换操作 + S06L20:文本的插入、变更、替换,以及合并操作

文章目录 Section 6&#xff1a;Transforming and Substituting TextS06L21 Inserting, Changing, Replacing, and Joining1 定位到行首非空字符&#xff0c;并启用插入模式2 在紧挨光标的下一个字符位置启动插入模式3 定位到一行末尾&#xff0c;并启用插入模式4 定位到光标的…

vip与haproxy构建nginx高可用集群传递客户端真实ip

问题 系统使用了vip与haproxy实现高可用以及对nginx进行负载均衡&#xff0c;但是发现在上游的应用服务无法拿到客户端的请求ip地址&#xff0c;拿到的是主haproxy机器的ip&#xff0c;以下是nginx与haproxy的缩减配置&#xff1a; location ~* ^/(xx|xx) {proxy_pass http:/…