jrc水体分类对水体二值掩码修正

news2025/1/5 20:16:12

   使用deepwatermap生成的水体二值掩码中有部分区域由于被云挡住无法识别,造成水体不连续是使用jrc离线数据进行修正,jrc数据下载连接如下:https://global-surface-water.appspot.com/download

选择指定区域的数据集合下载如图:

使用开源项目deepwatermap生成tiff格式的水体二值掩码图(需要把原本的png水体图进行转成tiff格式使用gdal把原始的坐标迁移过去)弄好之后开始对水体中非连续的水体使用jrc文件补全。

修正的代码如下:

import numpy as np
import rioxarray as rxr
from rasterio.enums import Resampling


def update_water_classification(target_path, output_path, water_threshold=2.5,
                                jrc_path='occurrence_90E_30Nv1_4_2021.tif'):
    # 加载目标影像(含水体掩膜)
    ZB_target = rxr.open_rasterio(target_path, masked=True).squeeze()

    # 加载JRC水体发生频率数据作为ZB
    ZB = rxr.open_rasterio(jrc_path, masked=True).squeeze()

    # 将ZB重新投影到目标影像的CRS,并重采样以匹配空间分辨率
    ZB_resampled = ZB.rio.reproject_match(ZB_target, resampling=Resampling.bilinear)
    #生成临时文件 仅用来测试jrc是否依据水体掩码进行重采样到相同大小
    # ZB_resampled = genTempTiffFile(ZB_resampled)

    # 创建一个新的掩码用于保存更新后的数据
    updated_mask = ZB_target.copy()  # 复制原始掩码作为基础

    # 找出需要更新的非水体像素位置(即值为0的位置)
    non_water_pixels = ZB_target.values == 0

    # 更新非水体区域:如果对应的ZB_resampled值大于等于water_threshold,则设为1(水体)
    # 使用布尔索引避免在同一数组上读写
    updated_mask.values[non_water_pixels] = np.where(
        ZB_resampled.values[non_water_pixels] >= water_threshold,
        1,
        0
    )

    # 保存最终结果
    updated_mask.rio.to_raster(output_path)
    print("Process completed.")


def genTempTiffFile(ZB_resampled):
    # 保存重采样后的JRC数据到临时文件
    # 设置一个新的数据类型和默认的nodata值
    new_dtype = 'float32'  # 或者其他适当的数据类型
    if np.issubdtype(new_dtype, np.floating):
        default_nodata = -9999.0  # 浮点类型的默认nodata值
    else:
        default_nodata = np.iinfo(new_dtype).min  # 整数类型的默认nodata值
    # 确保nodata值在新的数据类型范围内
    if 'nodata' in ZB_resampled.attrs:
        original_nodata = ZB_resampled.attrs['nodata']
        if not np.issubdtype(type(original_nodata), np.number) or not (
                np.iinfo(new_dtype).min <= original_nodata <= np.iinfo(new_dtype).max):
            print(
                f"Warning: nodata value {original_nodata} out of range for dtype {new_dtype}. Adjusting nodata value.")
            original_nodata = default_nodata
    else:
        original_nodata = default_nodata
        print("No nodata value found. Using default nodata value.")
    # 设置新的nodata值并转换数据类型
    ZB_resampled = ZB_resampled.rio.write_nodata(original_nodata)
    ZB_resampled = ZB_resampled.astype(new_dtype)
    ZB_resampled.rio.to_raster("resampled_jrc.tiff", dtype=new_dtype, nodata=original_nodata)
    print(f"Resampled JRC data saved to resampled_jrc")
    return ZB_resampled


# if __name__ == '__main__':
#     jrc_file = "occurrence_90E_30Nv1_4_2021.tif"
#     target_tiff = "D:/s2/L2A_T46RFS_A026142_20220309T042244_merged_cropped_binary_watermask.tiff"
#     output_tiff = target_tiff.replace('_merged_cropped_binary_watermask.tiff',
#                                       '_merged_cropped_binary_watermask_jrc.tiff')
#     update_water_classification(target_tiff, output_tiff)
#     print("影像处理完成并已保存")

 在此记录一下!希望可以帮到需要的朋友!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2270506.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机网络 (20)高速以太网

一、发展背景 随着计算机技术和网络应用的不断发展&#xff0c;传统的以太网速率已逐渐无法满足日益增长的带宽需求。因此&#xff0c;高速以太网应运而生&#xff0c;它以提高数据传输速率为主要目标&#xff0c;不断推动着以太网技术的发展。 二、技术特点 高速传输&#xff…

基于SpringBoot的校园二手交易平台的设计与实现(源码+SQL+LW+部署讲解)

文章目录 摘 要1. 第1章 选题背景及研究意义1.1 选题背景1.2 研究意义1.3 论文结构安排 2. 第2章 相关开发技术2.1 前端技术2.2 后端技术2.3 数据库技术 3. 第3章 可行性及需求分析3.1 可行性分析3.2 系统需求分析 4. 第4章 系统概要设计4.1 系统功能模块设计4.2 数据库设计 5.…

2024年中国新能源汽车用车发展怎么样 PaperGPT(二)

用车趋势深入分析 接上文&#xff0c;2024年中国新能源汽车用车发展怎么样 PaperGPT&#xff08;一&#xff09;-CSDN博客本文将继续深入探讨新能源汽车的用车强度、充电行为以及充电设施的现状。 用车强度 月均行驶里程&#xff1a;2024年纯电车辆月均行驶超过1500公里&…

antd-vue - - - - - a-date-picker限制选择范围

antd-vue - - - - - a-date-picker限制选择范围 1. 效果展示2. 代码展示 1. 效果展示 如图&#xff1a;限制选择范围为 今年 & 去年 的 月份. 2. 代码展示 <template><a-date-picker:disabledDate"disabledDate"picker"month"/> &l…

滑动窗口、流量控制和拥塞控制

1. 确认应答机制 确认应答机制是计算机网络中&#xff0c;用于确保数据可靠传输的一种方法。 它通过发送 ACK 数据段来通知对方&#xff0c;每一个 ACK 数据段都有一个确认序号&#xff0c;表明&#xff1a; 确认序号之前的所有数据都已被接收&#xff0c;接下来从确认序号开…

TCP粘/拆包----自定义消息协议

今天是2024年12月31日&#xff0c;今年的最后一天&#xff0c;希望所有的努力在新的一年会有回报。❀ 无路可退&#xff0c;放弃很难&#xff0c;坚持很酷 TCP传输 是一种面向二进制的&#xff0c;流的传输。在传输过程中最大的问题是消息之间的边界不明确。而在服务端主要的…

前端,npm install安装依赖卡在sill idealTree buildDeps(设置淘宝依赖)

输入npm i后&#xff0c;一直卡在sill idealTree buildDeps&#xff0c;一动不动 cnpm可以安装成功&#xff0c;但使用cnpm不会生成package-lock.json文件 设置淘宝依赖&#xff0c;依然卡住&#xff0c;挂梯子也不行 解决方法&#xff1a; // 取消ssl验证 set strict-ssl …

【有作图代码】Highway Network与ResNet:skip connection如何解决深层网络欠拟合问题

【有作图代码】Highway Network与ResNet&#xff1a;skip connection如何解决深层网络欠拟合问题 关键词&#xff1a; #Highway Network #ResNet #skip connection #深层网络 #欠拟合问题 具体实例与推演 假设我们有一个深层神经网络&#xff0c;其层数为L&#xff0c;每一…

目标检测入门指南:从原理到实践

目录 1. 数据准备与预处理 2. 模型架构设计 2.1 特征提取网络原理 2.2 区域提议网络(RPN)原理 2.3 特征金字塔网络(FPN)原理 2.4 边界框回归原理 2.5 非极大值抑制(NMS)原理 2.6 多尺度训练与测试原理 2.7 损失函数设计原理 3. 损失函数设计 4. 训练策略优化 5. 后…

搭建开源版Ceph分布式存储

系统&#xff1a;Rocky8.6 三台2H4G 三块10G的硬盘的虚拟机 node1 192.168.2.101 node2 192.168.2.102 node3 192.168.2.103 三台虚拟机环境准备 1、配置主机名和IP的映射关系 2、关闭selinux和firewalld防火墙 3、配置时间同步且所有节点chronyd服务开机自启 1、配置主机名和…

租用服务器还是服务器托管:哪种方案更适合您?

随着企业对网络服务质量要求的不断提高&#xff0c;租用服务器和服务器托管是两种常见的选择&#xff0c;各自具备独特的优势和适用场景。这篇文章将从多个维度对这两种方案进行详细分析&#xff0c;帮助大家进行对比选择。 租用服务器的优劣势分析 优点 无需大额初始投入 租用…

LDD3学习6--Scull的变种

1 整体介绍 之前在LDD3学习1里面就提过scull的变种&#xff0c;LDD学习1--启程-CSDN博客&#xff0c;大概的变种有这些&#xff1a; 名称全名说明对应章节scullSimple Character Utility for Loading Localities基础版本3scullcScull with Slab cache使用基于slab高速缓存8.2.…

设计模式の状态策略责任链模式

文章目录 前言一、状态模式二、策略模式三、责任链模式 前言 本篇是关于设计模式中的状态模式、策略模式、以及责任链模式的学习笔记。 一、状态模式 状态模式是一种行为设计模式&#xff0c;核心思想在于&#xff0c;使某个对象在其内部状态改变时&#xff0c;改变该对象的行为…

【网络协议】路由信息协议 (RIP)

未经许可&#xff0c;不得转载。 路由信息协议&#xff08;Routing Information Protocol&#xff0c;简称 RIP&#xff09;是一种使用跳数&#xff08;hop count&#xff09;作为路由度量标准的路由协议&#xff0c;用于确定源网络和目标网络之间的最佳路径。 文章目录 什么是…

linux下安装达梦数据库v8详解

目录 操作系统、数据库 1、下载达梦数据库 2、安装前准备 2.1、建立数据库用户和组 2.2、修改文件打开最大数 2.3、挂载镜像 2.4、新建安装目录 3、数据库安装 4、配置环境变量 5、初始化数据库实例 6、注册服务 7、使用数据库 8、卸载数据库 9、多实例管理 10、…

小程序租赁系统的优势与应用探索

内容概要 小程序租赁系统&#xff0c;听起来很高大上&#xff0c;但实际上它比你想象的要实用得多&#xff01;设想一下&#xff0c;几乎所有的租赁需求都能通过手机轻松解决。这种系统的便捷性体现在让用户随时随地都能发起租赁请求&#xff0c;而不再受制于传统繁琐的手续。…

(leetcode算法题)​122. 买卖股票的最佳时机 II​ 和 123. 买卖股票的最佳时机 III

这两个题都可以进行转化&#xff0c;转换成等价问题求解 对于122的等价转换 求出所有能够赚钱的区间&#xff0c;这些区间满足一下特点 1. 首尾相接&#xff0c; 2. 区间末尾的值大于区间开头的值 3. 每个区间尽可能的小 新的问题只要用贪心的思想就能求得问题的解 只要求出上…

oceanbase集群访问异常问题处理

1.报错现象 2.问题排查 检查obproxy状态发现为不可用状态 重启obproxy 依次重启Obproxy集群 观察任务状态 重启完成 Obproxy状态正常 3.验证登录 登录成功

WeNet:面向生产的流式和非流式端到端语音识别工具包

这篇文章介绍了WeNet&#xff0c;一个面向生产的开源端到端&#xff08;E2E&#xff09;语音识别工具包。WeNet的主要特点和贡献如下&#xff1a; 统一流式和非流式识别&#xff1a;提出了一种名为U2的两阶段框架&#xff0c;能够在单一模型中同时支持流式和非流式语音识别&…

ArcGIS计算矢量要素集中每一个面的遥感影像平均值、最大值等统计指标

本文介绍在ArcMap软件中&#xff0c;基于矢量面要素集&#xff0c;计算在其中每一个面区域内&#xff0c;遥感影像的像元个数、平均值、总和等统计值&#xff0c;并将统计信息附加到矢量图层的属性表中的方法。 首先&#xff0c;明确一下本文的需求。现在有一个矢量面要素集&am…