scrapy 教程

news2025/1/5 15:24:58

Scrapy Tutorial¶

In this tutorial, we’ll assume that Scrapy is already installed on your system. If that’s not the case, see Installation guide.

We are going to scrape quotes.toscrape.com, a website that lists quotes from famous authors.

This tutorial will walk you through these tasks:

  1. Creating a new Scrapy project

  2. Writing a spider to crawl a site and extract data

  3. Exporting the scraped data using the command line

  4. Changing spider to recursively follow links

  5. Using spider arguments

Scrapy is written in Python. The more you learn about Python, the more you can get out of Scrapy.

If you’re already familiar with other languages and want to learn Python quickly, the Python Tutorial is a good resource.

If you’re new to programming and want to start with Python, the following books may be useful to you:

  • Automate the Boring Stuff With Python

  • How To Think Like a Computer Scientist

  • Learn Python 3 The Hard Way

You can also take a look at this list of Python resources for non-programmers, as well as the suggested resources in the learnpython-subreddit.

Creating a project¶

Before you start scraping, you will have to set up a new Scrapy project. Enter a directory where you’d like to store your code and run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
    scrapy.cfg            # deploy configuration file

    tutorial/             # project's Python module, you'll import your code from here
        __init__.py

        items.py          # project items definition file

        middlewares.py    # project middlewares file

        pipelines.py      # project pipelines file

        settings.py       # project settings file

        spiders/          # a directory where you'll later put your spiders
            __init__.py

Our first Spider¶

Spiders are classes that you define and that Scrapy uses to scrape information from a website (or a group of websites). They must subclass Spider and define the initial requests to be made, and optionally, how to follow links in pages and parse the downloaded page content to extract data.

This is the code for our first Spider. Save it in a file named quotes_spider.py under the tutorial/spiders directory in your project:

from pathlib import Path

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"

    def start_requests(self):
        urls = [
            "https://quotes.toscrape.com/page/1/",
            "https://quotes.toscrape.com/page/2/",
        ]
        for url in urls:
            yield scrapy.Request(url=url, callback=self.parse)

    def parse(self, response):
        page = response.url.split("/")[-2]
        filename = f"quotes-{page}.html"
        Path(filename).write_bytes(response.body)
        self.log(f"Saved file {filename}")

As you can see, our Spider subclasses scrapy.Spider and defines some attributes and methods:

  • name: identifies the Spider. It must be unique within a project, that is, you can’t set the same name for different Spiders.

  • start_requests(): must return an iterable of Requests (you can return a list of requests or write a generator function) which the Spider will begin to crawl from. Subsequent requests will be generated successively from these initial requests.

  • parse(): a method that will be called to handle the response downloaded for each of the requests made. The response parameter is an instance of TextResponse that holds the page content and has further helpful methods to handle it.

    The parse() method usually parses the response, extracting the scraped data as dicts and also finding new URLs to follow and creating new requests (Request) from them.

How to run our spider¶

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl quotes

This command runs the spider named quotes that we’ve just added, that will send some requests for the quotes.toscrape.com domain. You will get an output similar to this:

... (omitted for brevity)
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Spider opened
2016-12-16 21:24:05 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:24:05 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (404) <GET https://quotes.toscrape.com/robots.txt> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://quotes.toscrape.com/page/1/> (referer: None)
2016-12-16 21:24:05 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://quotes.toscrape.com/page/2/> (referer: None)
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-1.html
2016-12-16 21:24:05 [quotes] DEBUG: Saved file quotes-2.html
2016-12-16 21:24:05 [scrapy.core.engine] INFO: Closing spider (finished)
...

Now, check the files in the current directory. You should notice that two new files have been created: quotes-1.html and quotes-2.html, with the content for the respective URLs, as our parse method instructs.

Note

If you are wondering why we haven’t parsed the HTML yet, hold on, we will cover that soon.

What just happened under the hood?¶

Scrapy schedules the scrapy.Request objects returned by the start_requests method of the Spider. Upon receiving a response for each one, it instantiates Response objects and calls the callback method associated with the request (in this case, the parse method) passing the response as an argument.

A shortcut to the start_requests method¶

Instead of implementing a start_requests() method that generates scrapy.Request objects from URLs, you can just define a start_urls class attribute with a list of URLs. This list will then be used by the default implementation of start_requests() to create the initial requests for your spider.

from pathlib import Path

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"
    start_urls = [
        "https://quotes.toscrape.com/page/1/",
        "https://quotes.toscrape.com/page/2/",
    ]

    def parse(self, response):
        page = response.url.split("/")[-2]
        filename = f"quotes-{page}.html"
        Path(filename).write_bytes(response.body)

The parse() method will be called to handle each of the requests for those URLs, even though we haven’t explicitly told Scrapy to do so. This happens because parse() is Scrapy’s default callback method, which is called for requests without an explicitly assigned callback.

Extracting data¶

The best way to learn how to extract data with Scrapy is trying selectors using the Scrapy shell. Run:

scrapy shell 'https://quotes.toscrape.com/page/1/'

Note

Remember to always enclose URLs in quotes when running Scrapy shell from the command line, otherwise URLs containing arguments (i.e. & character) will not work.

On Windows, use double quotes instead:

scrapy shell "https://quotes.toscrape.com/page/1/"

You will see something like:

[ ... Scrapy log here ... ]
2016-09-19 12:09:27 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://quotes.toscrape.com/page/1/> (referer: None)
[s] Available Scrapy objects:
[s]   scrapy     scrapy module (contains scrapy.Request, scrapy.Selector, etc)
[s]   crawler    <scrapy.crawler.Crawler object at 0x7fa91d888c90>
[s]   item       {}
[s]   request    <GET https://quotes.toscrape.com/page/1/>
[s]   response   <200 https://quotes.toscrape.com/page/1/>
[s]   settings   <scrapy.settings.Settings object at 0x7fa91d888c10>
[s]   spider     <DefaultSpider 'default' at 0x7fa91c8af990>
[s] Useful shortcuts:
[s]   shelp()           Shell help (print this help)
[s]   fetch(req_or_url) Fetch request (or URL) and update local objects
[s]   view(response)    View response in a browser

Using the shell, you can try selecting elements using CSS with the response object:

>>> response.css("title")
[<Selector query='descendant-or-self::title' data='<title>Quotes to Scrape</title>'>]

The result of running response.css('title') is a list-like object called SelectorList, which represents a list of Selector objects that wrap around XML/HTML elements and allow you to run further queries to refine the selection or extract the data.

To extract the text from the title above, you can do:

>>> response.css("title::text").getall()
['Quotes to Scrape']

There are two things to note here: one is that we’ve added ::text to the CSS query, to mean we want to select only the text elements directly inside <title> element. If we don’t specify ::text, we’d get the full title element, including its tags:

>>> response.css("title").getall()
['<title>Quotes to Scrape</title>']

The other thing is that the result of calling .getall() is a list: it is possible that a selector returns more than one result, so we extract them all. When you know you just want the first result, as in this case, you can do:

>>> response.css("title::text").get()
'Quotes to Scrape'

As an alternative, you could’ve written:

>>> response.css("title::text")[0].get()
'Quotes to Scrape'

Accessing an index on a SelectorList instance will raise an IndexError exception if there are no results:

>>> response.css("noelement")[0].get()
Traceback (most recent call last):
...
IndexError: list index out of range

You might want to use .get() directly on the SelectorList instance instead, which returns None if there are no results:

>>> response.css("noelement").get()

There’s a lesson here: for most scraping code, you want it to be resilient to errors due to things not being found on a page, so that even if some parts fail to be scraped, you can at least get some data.

Besides the getall() and get() methods, you can also use the re() method to extract using regular expressions:

>>> response.css("title::text").re(r"Quotes.*")
['Quotes to Scrape']
>>> response.css("title::text").re(r"Q\w+")
['Quotes']
>>> response.css("title::text").re(r"(\w+) to (\w+)")
['Quotes', 'Scrape']

In order to find the proper CSS selectors to use, you might find it useful to open the response page from the shell in your web browser using view(response). You can use your browser’s developer tools to inspect the HTML and come up with a selector (see Using your browser’s Developer Tools for scraping).

Selector Gadget is also a nice tool to quickly find CSS selector for visually selected elements, which works in many browsers.

XPath: a brief intro¶

Besides CSS, Scrapy selectors also support using XPath expressions:

>>> response.xpath("//title")
[<Selector query='//title' data='<title>Quotes to Scrape</title>'>]
>>> response.xpath("//title/text()").get()
'Quotes to Scrape'

XPath expressions are very powerful, and are the foundation of Scrapy Selectors. In fact, CSS selectors are converted to XPath under-the-hood. You can see that if you read the text representation of the selector objects in the shell closely.

While perhaps not as popular as CSS selectors, XPath expressions offer more power because besides navigating the structure, it can also look at the content. Using XPath, you’re able to select things like: the link that contains the text “Next Page”. This makes XPath very fitting to the task of scraping, and we encourage you to learn XPath even if you already know how to construct CSS selectors, it will make scraping much easier.

We won’t cover much of XPath here, but you can read more about using XPath with Scrapy Selectors here. To learn more about XPath, we recommend this tutorial to learn XPath through examples, and this tutorial to learn “how to think in XPath”.

Extracting quotes and authors¶

Now that you know a bit about selection and extraction, let’s complete our spider by writing the code to extract the quotes from the web page.

Each quote in https://quotes.toscrape.com is represented by HTML elements that look like this:

<div class="quote">
    <span class="text">“The world as we have created it is a process of our
    thinking. It cannot be changed without changing our thinking.”</span>
    <span>
        by <small class="author">Albert Einstein</small>
        <a href="/author/Albert-Einstein">(about)</a>
    </span>
    <div class="tags">
        Tags:
        <a class="tag" href="/tag/change/page/1/">change</a>
        <a class="tag" href="/tag/deep-thoughts/page/1/">deep-thoughts</a>
        <a class="tag" href="/tag/thinking/page/1/">thinking</a>
        <a class="tag" href="/tag/world/page/1/">world</a>
    </div>
</div>

Let’s open up scrapy shell and play a bit to find out how to extract the data we want:

scrapy shell 'https://quotes.toscrape.com'

We get a list of selectors for the quote HTML elements with:

>>> response.css("div.quote")
[<Selector query="descendant-or-self::div[@class and contains(concat(' ', normalize-space(@class), ' '), ' quote ')]" data='<div class="quote" itemscope itemtype...'>,
<Selector query="descendant-or-self::div[@class and contains(concat(' ', normalize-space(@class), ' '), ' quote ')]" data='<div class="quote" itemscope itemtype...'>,
...]

Each of the selectors returned by the query above allows us to run further queries over their sub-elements. Let’s assign the first selector to a variable, so that we can run our CSS selectors directly on a particular quote:

>>> quote = response.css("div.quote")[0]

Now, let’s extract the textauthor and tags from that quote using the quote object we just created:

>>> text = quote.css("span.text::text").get()
>>> text
'“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”'
>>> author = quote.css("small.author::text").get()
>>> author
'Albert Einstein'

Given that the tags are a list of strings, we can use the .getall() method to get all of them:

>>> tags = quote.css("div.tags a.tag::text").getall()
>>> tags
['change', 'deep-thoughts', 'thinking', 'world']

Having figured out how to extract each bit, we can now iterate over all the quote elements and put them together into a Python dictionary:

>>> for quote in response.css("div.quote"):
...     text = quote.css("span.text::text").get()
...     author = quote.css("small.author::text").get()
...     tags = quote.css("div.tags a.tag::text").getall()
...     print(dict(text=text, author=author, tags=tags))
...
{'text': '“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”', 'author': 'Albert Einstein', 'tags': ['change', 'deep-thoughts', 'thinking', 'world']}
{'text': '“It is our choices, Harry, that show what we truly are, far more than our abilities.”', 'author': 'J.K. Rowling', 'tags': ['abilities', 'choices']}
...

Extracting data in our spider¶

Let’s get back to our spider. Until now, it hasn’t extracted any data in particular, just saving the whole HTML page to a local file. Let’s integrate the extraction logic above into our spider.

A Scrapy spider typically generates many dictionaries containing the data extracted from the page. To do that, we use the yield Python keyword in the callback, as you can see below:

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"
    start_urls = [
        "https://quotes.toscrape.com/page/1/",
        "https://quotes.toscrape.com/page/2/",
    ]

    def parse(self, response):
        for quote in response.css("div.quote"):
            yield {
                "text": quote.css("span.text::text").get(),
                "author": quote.css("small.author::text").get(),
                "tags": quote.css("div.tags a.tag::text").getall(),
            }

To run this spider, exit the scrapy shell by entering:

quit()

Then, run:

scrapy crawl quotes

Now, it should output the extracted data with the log:

2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 https://quotes.toscrape.com/page/1/>
{'tags': ['life', 'love'], 'author': 'André Gide', 'text': '“It is better to be hated for what you are than to be loved for what you are not.”'}
2016-09-19 18:57:19 [scrapy.core.scraper] DEBUG: Scraped from <200 https://quotes.toscrape.com/page/1/>
{'tags': ['edison', 'failure', 'inspirational', 'paraphrased'], 'author': 'Thomas A. Edison', 'text': "“I have not failed. I've just found 10,000 ways that won't work.”"}

Storing the scraped data¶

The simplest way to store the scraped data is by using Feed exports, with the following command:

scrapy crawl quotes -O quotes.json

That will generate a quotes.json file containing all scraped items, serialized in JSON.

The -O command-line switch overwrites any existing file; use -o instead to append new content to any existing file. However, appending to a JSON file makes the file contents invalid JSON. When appending to a file, consider using a different serialization format, such as JSON Lines:

scrapy crawl quotes -o quotes.jsonl

The JSON Lines format is useful because it’s stream-like, so you can easily append new records to it. It doesn’t have the same problem as JSON when you run twice. Also, as each record is a separate line, you can process big files without having to fit everything in memory, there are tools like JQ to help do that at the command-line.

In small projects (like the one in this tutorial), that should be enough. However, if you want to perform more complex things with the scraped items, you can write an Item Pipeline. A placeholder file for Item Pipelines has been set up for you when the project is created, in tutorial/pipelines.py. Though you don’t need to implement any item pipelines if you just want to store the scraped items.

Following links¶

Let’s say, instead of just scraping the stuff from the first two pages from https://quotes.toscrape.com, you want quotes from all the pages in the website.

Now that you know how to extract data from pages, let’s see how to follow links from them.

The first thing to do is extract the link to the page we want to follow. Examining our page, we can see there is a link to the next page with the following markup:

<ul class="pager">
    <li class="next">
        <a href="/page/2/">Next <span aria-hidden="true">&rarr;</span></a>
    </li>
</ul>

We can try extracting it in the shell:

>>> response.css('li.next a').get()
'<a href="/page/2/">Next <span aria-hidden="true">→</span></a>'

This gets the anchor element, but we want the attribute href. For that, Scrapy supports a CSS extension that lets you select the attribute contents, like this:

>>> response.css("li.next a::attr(href)").get()
'/page/2/'

There is also an attrib property available (see Selecting element attributes for more):

>>> response.css("li.next a").attrib["href"]
'/page/2/'

Now let’s see our spider, modified to recursively follow the link to the next page, extracting data from it:

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"
    start_urls = [
        "https://quotes.toscrape.com/page/1/",
    ]

    def parse(self, response):
        for quote in response.css("div.quote"):
            yield {
                "text": quote.css("span.text::text").get(),
                "author": quote.css("small.author::text").get(),
                "tags": quote.css("div.tags a.tag::text").getall(),
            }

        next_page = response.css("li.next a::attr(href)").get()
        if next_page is not None:
            next_page = response.urljoin(next_page)
            yield scrapy.Request(next_page, callback=self.parse)

Now, after extracting the data, the parse() method looks for the link to the next page, builds a full absolute URL using the urljoin() method (since the links can be relative) and yields a new request to the next page, registering itself as callback to handle the data extraction for the next page and to keep the crawling going through all the pages.

What you see here is Scrapy’s mechanism of following links: when you yield a Request in a callback method, Scrapy will schedule that request to be sent and register a callback method to be executed when that request finishes.

Using this, you can build complex crawlers that follow links according to rules you define, and extract different kinds of data depending on the page it’s visiting.

In our example, it creates a sort of loop, following all the links to the next page until it doesn’t find one – handy for crawling blogs, forums and other sites with pagination.

A shortcut for creating Requests¶

As a shortcut for creating Request objects you can use response.follow:

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"
    start_urls = [
        "https://quotes.toscrape.com/page/1/",
    ]

    def parse(self, response):
        for quote in response.css("div.quote"):
            yield {
                "text": quote.css("span.text::text").get(),
                "author": quote.css("span small::text").get(),
                "tags": quote.css("div.tags a.tag::text").getall(),
            }

        next_page = response.css("li.next a::attr(href)").get()
        if next_page is not None:
            yield response.follow(next_page, callback=self.parse)

Unlike scrapy.Request, response.follow supports relative URLs directly - no need to call urljoin. Note that response.follow just returns a Request instance; you still have to yield this Request.

You can also pass a selector to response.follow instead of a string; this selector should extract necessary attributes:

for href in response.css("ul.pager a::attr(href)"):
    yield response.follow(href, callback=self.parse)

For <a> elements there is a shortcut: response.follow uses their href attribute automatically. So the code can be shortened further:

for a in response.css("ul.pager a"):
    yield response.follow(a, callback=self.parse)

To create multiple requests from an iterable, you can use response.follow_all instead:

anchors = response.css("ul.pager a")
yield from response.follow_all(anchors, callback=self.parse)

or, shortening it further:

yield from response.follow_all(css="ul.pager a", callback=self.parse)

More examples and patterns¶

Here is another spider that illustrates callbacks and following links, this time for scraping author information:

import scrapy


class AuthorSpider(scrapy.Spider):
    name = "author"

    start_urls = ["https://quotes.toscrape.com/"]

    def parse(self, response):
        author_page_links = response.css(".author + a")
        yield from response.follow_all(author_page_links, self.parse_author)

        pagination_links = response.css("li.next a")
        yield from response.follow_all(pagination_links, self.parse)

    def parse_author(self, response):
        def extract_with_css(query):
            return response.css(query).get(default="").strip()

        yield {
            "name": extract_with_css("h3.author-title::text"),
            "birthdate": extract_with_css(".author-born-date::text"),
            "bio": extract_with_css(".author-description::text"),
        }

This spider will start from the main page, it will follow all the links to the authors pages calling the parse_author callback for each of them, and also the pagination links with the parse callback as we saw before.

Here we’re passing callbacks to response.follow_all as positional arguments to make the code shorter; it also works for Request.

The parse_author callback defines a helper function to extract and cleanup the data from a CSS query and yields the Python dict with the author data.

Another interesting thing this spider demonstrates is that, even if there are many quotes from the same author, we don’t need to worry about visiting the same author page multiple times. By default, Scrapy filters out duplicated requests to URLs already visited, avoiding the problem of hitting servers too much because of a programming mistake. This can be configured in the DUPEFILTER_CLASS setting.

Hopefully by now you have a good understanding of how to use the mechanism of following links and callbacks with Scrapy.

As yet another example spider that leverages the mechanism of following links, check out the CrawlSpider class for a generic spider that implements a small rules engine that you can use to write your crawlers on top of it.

Also, a common pattern is to build an item with data from more than one page, using a trick to pass additional data to the callbacks.

Using spider arguments¶

You can provide command line arguments to your spiders by using the -a option when running them:

scrapy crawl quotes -O quotes-humor.json -a tag=humor

These arguments are passed to the Spider’s __init__ method and become spider attributes by default.

In this example, the value provided for the tag argument will be available via self.tag. You can use this to make your spider fetch only quotes with a specific tag, building the URL based on the argument:

import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"

    def start_requests(self):
        url = "https://quotes.toscrape.com/"
        tag = getattr(self, "tag", None)
        if tag is not None:
            url = url + "tag/" + tag
        yield scrapy.Request(url, self.parse)

    def parse(self, response):
        for quote in response.css("div.quote"):
            yield {
                "text": quote.css("span.text::text").get(),
                "author": quote.css("small.author::text").get(),
            }

        next_page = response.css("li.next a::attr(href)").get()
        if next_page is not None:
            yield response.follow(next_page, self.parse)

If you pass the tag=humor argument to this spider, you’ll notice that it will only visit URLs from the humor tag, such as https://quotes.toscrape.com/tag/humor.

You can learn more about handling spider arguments here.

Next steps¶

This tutorial covered only the basics of Scrapy, but there’s a lot of other features not mentioned here. Check the What else? section in the Scrapy at a glance chapter for a quick overview of the most important ones.

You can continue from the section Basic concepts to know more about the command-line tool, spiders, selectors and other things the tutorial hasn’t covered like modeling the scraped data. If you’d prefer to play with an example project, check the Examples section.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2270269.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Leecode】Leecode刷题之路第97天之交错字符串

题目出处 97-交错字符串-题目出处 题目描述 个人解法 思路&#xff1a; todo代码示例&#xff1a;&#xff08;Java&#xff09; todo复杂度分析 todo官方解法 97-交错字符串-官方解法 方法1&#xff1a;动态规划 思路&#xff1a; class Solution {public boolean isInte…

【Python】闭包

闭包&#xff08;Closure&#xff09;是指一个函数记住了并可以访问它的词法作用域&#xff08;lexical scope&#xff09;&#xff0c;即使这个函数在词法作用域之外执行。 闭包其实就是延伸了作用域的函数&#xff0c;包括被延伸函数主体中引用的非全局变量和局部变量。这些…

【机器学习】【朴素贝叶斯分类器】从理论到实践:朴素贝叶斯分类器在垃圾短信过滤中的应用

&#x1f31f; 关于我 &#x1f31f; 大家好呀&#xff01;&#x1f44b; 我是一名大三在读学生&#xff0c;目前对人工智能领域充满了浓厚的兴趣&#xff0c;尤其是机器学习、深度学习和自然语言处理这些酷炫的技术&#xff01;&#x1f916;&#x1f4bb; 平时我喜欢动手做实…

信息系统项目管理师——第8章章 项目整合管理 笔记

8 项目整合管理&#xff08;最后反过来看&#xff09; 项目整合过程&#xff1a;①制定项目章程&#xff08;启动过程&#xff09;、②制订项目管理计划&#xff08;规划过程&#xff09;、③指导和管理项目工作、管理项目知识&#xff08;执行过程&#xff09;、④监控项目工…

机器学习 学习知识点

机器学习 学习知识点 什么是消融实验&#xff08;Ablation experiment&#xff09;&#xff1f;num_step与batch_size的区别python glob.glob()函数认识python的条件判断之is not、is not None、is Nonetqdm介绍及常用方法softmax 激活函数。type_as(tesnor)Python OpenCV cv2.…

【论文+源码】一个基于SSM(Spring + Spring MVC + MyBatis)的公寓电能计量系统

为了实现一个基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;的公寓电能计量系统&#xff0c;我们需要创建一个简单的Web应用程序来记录和显示每个公寓的电能使用情况。以下是一个基本的实现示例。 我们将包括以下几个部分&#xff1a; 数据库表设计实体类DAO层…

【74LS160+74LS273DW锁存器8位的使用频率计】2022-7-12

缘由 想知道这个数字频率计仿真哪里出现错误了&#xff0c;一直无法运行哎&#xff0c;如何解决&#xff1f;-运维-CSDN问答

redux react-redux @reduxjs/toolkit

redux团队先后推出了redux、react-redux、reduxjs/toolkit&#xff0c;这三个库的api各有不同。本篇文章就来梳理一下当我们需要在项目中集成redux&#xff0c;从直接使用redux&#xff0c;到使用react-redux&#xff0c;再到react-redux和reduxjs/toolkit配合使用&#xff0c;…

Visual Studio 2022安装教程

1、下载网址 Visual Studio 2022 IDE安装网址借助 Visual Studio 设计&#xff0c;具有自动完成、构建、调试、测试功能的代码将与 Git 管理和云部署融为一体。https://visualstudio.microsoft.com/zh-hans/vs/ 点击图片所示 双击运行 2、安装 点击C桌面开发&#xff08;右边…

Mono里运行C#脚本21—mono_image_init_name_cache

前面分析了怎么样加载mscorlib.dll文件,然后把文件数据读取到内存。 接着下来,就会遇到加载整个C#的类型系统,比如System. Object,大体类型如下图所示: 在对CIL编译之前,需要把这些类型全部加载到内存里,以便快捷地访问它们。 mono_image_init_name_cache函数就是完成…

C/C++编程安全标准GJB-8114解读——分支控制类

软件测试实验室在建立软件测试体系或申请cnas/cma相关资质时&#xff0c;需要依据相关技术标准选择合适的测试方法&#xff0c;并明确在测试作业指导书中&#xff0c;指导后续软件测试工作的开展。GJB-8114是一部嵌入式软件安全测试相关的国家标准&#xff0c;本系列文章我们就…

国产文本编辑器EverEdit - 批量转码转换行符

1 批量转码&转换行符 1.1 应用场景 如果用户批量在Windows编辑文件&#xff0c;要上传到异构系统&#xff0c;如&#xff1a;Linux&#xff0c;则需要批量转换编码和换行符&#xff0c;此时可以使用EverEdit的批量转码功能。 1.2 使用方法 选择主菜单文档 -> 批量转码…

期权懂|期权都有哪些存在的风险因素?

锦鲤三三每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 期权都有哪些存在的风险因素&#xff1f; 一、市场价格波动风险 期权的价格受到多种因素的影响&#xff0c;包括标的资产价格、市场利率、波动率等。 这些因素的变化可能导致期…

关于AI面试系统2025年趋势评估!

在快速发展的科技浪潮中&#xff0c;AI技术正以前所未有的速度渗透到各行各业。企业招聘领域&#xff0c;作为人才选拔的关键环节&#xff0c;也不例外地迎来了AI面试系统的广泛应用和持续创新。2025年&#xff0c;AI面试系统不仅成为企业招聘的主流工具&#xff0c;更在智能化…

《类和对象:基础原理全解析(下篇)》

目录 一、类的构造函数的初始化列表1. 初始化列表的使用2. 初始化列表的初始化顺序3. 使用初始化列表的注意事项 二、类的自动类型转换1. 类的自动类型转换的使用2. 关闭类的自动类型转换 三、静态类成员1. 静态成员的特性2. 使用静态成员计算类创建了多少个对象3. 使用静态类成…

分析服务器 systemctl 启动gozero项目报错的解决方案

### 分析 systemctl start beisen.service 报错 在 Linux 系统中&#xff0c;systemctl 是管理系统和服务的主要工具。当我们尝试重启某个服务时&#xff0c;如果服务启动失败&#xff0c;systemctl 会输出错误信息&#xff0c;帮助我们诊断和解决问题。 本文将通过一个实际的…

Crosslink-NX应用连载(12):如何复用特殊功能管脚

作者&#xff1a;Hello,Panda 大家早上好。 昨天有朋友私信我&#xff0c;如何复用Crosslink-NX的特殊功能引脚如PROGRAMN、DONE、INITN诸如这些。熊猫君在这里简单介绍下&#xff1a; 以LIFCL-33U-8CTG104C为例&#xff0c;我们建立一个简单的指示灯LED周期闪烁的工程&…

go项目使用gentool生成model的gen.go问题

Gen Tool 是一个没有依赖关系的二进制文件&#xff0c;可以用来从数据库生成结构。 使用方法&#xff1a; go install gorm.io/gen/tools/gentoollatest在项目根目录,执行连接的数据库中指定某几张表结构生成数据库model层 gentool -dsn "root:123456tcp(localhost:330…

家政上门小程序如何创建?家政服务怎么能少了小程序帮手

在如今这个“忙到没时间打扫”的时代&#xff0c;家政服务变得越来越受欢迎。为了提高效率、减少沟通成本&#xff0c;很多家政公司都已经开始借助小程序的力量。那么&#xff0c;家政上门小程序到底该如何创建呢?小程序又是如何帮助家政服务更好地满足客户需求的呢?本文将为…

破解密码

rhel8/centos8 重置 root 密码 方法 1 &#xff1a; rd.break 第 1 步 重启系统&#xff0c;在下图所示界面按 e 键 第2步 找到linux这行&#xff0c;末尾空格后 输入 rd.break 第3步 查看&#xff0c;可选步骤 这里 sysroot 是以只读的形式挂载的&#xff0c;所以要以可读可…