视觉里程计(Visual Odometry, VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。
特征点法
特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,计算特征点之间的匹配关系,进而估计相机的运动。
特征点法简介
- 原理:提取图像中显著的特征点,并通过特征点的匹配关系推断相机运动。
- 流程:
- 提取图像特征点。
- 描述特征点并计算特征点匹配关系。
- 通过特征匹配估计相机运动(后续结合几何关系)。
ORB特征
- ORB(Oriented FAST and Rotated BRIEF)是一种高效的特征点提取和描述方法,常用于特征点法中。
- ORB特征点提取:基于FAST角点,结合图像金字塔提取多尺度特征点。
- ORB描述子:使用BRIEF描述子(特征点局部的二值编码)加快特征匹配。
- 优势:ORB特征兼具高效性和鲁棒性,且能处理旋转和尺度变化。
特征匹配
- 常用匹配算法:
- 暴力匹配:直接计算每对特征点描述子的距离(如欧氏距离、汉明距离),效率低。
- KNN匹配:为每个特征点找到最近的几个邻居,并通过比值测试筛选最佳匹配。
- 关键点均匀化:通过八叉树等方法均匀分布特征点,避免密集区域的冗余。
2D-2D对极几何
在特征点匹配基础上,2D-2D对极几何用于计算相机间的相对位姿。
对极约束
- 定义:在两幅图像中,某点 𝑝1 的匹配点 𝑝2 必定满足对极约束:
p
2
⊤
F
p
1
=
0
\mathbf{p}_2^\top\mathbf{F}\mathbf{p}_1=0
p2⊤Fp1=0
其中 𝐹 是基础矩阵,描述两图像之间的几何关系。
本质矩阵
- 当相机的内参已知时,基础矩阵 𝐹可转化为本质矩阵 𝐸:
E
=
K
⊤
F
K
\mathbf{E}=\mathbf{K}^\top\mathbf{F}\mathbf{K}
E=K⊤FK
其中 𝐾 是相机的内参矩阵。
单应矩阵
- 对于静止的平面场景,匹配点间也可以通过单应矩阵 𝐻 建立关系: p 2 = H p 1 \mathbf{p}_2=\mathbf{H}\mathbf{p}_1 p2=Hp1
- 本质矩阵 vs 单应矩阵:
- 本质矩阵:适用于一般场景,包含视差信息。
- 单应矩阵:适用于平面场景或无视差运动,易退化。
位姿分解
通过分解本质矩阵 𝐸,可恢复相机的相对位姿(旋转矩阵 𝑅 和平移向量 𝑡)。
三角测量
三角测量是从两帧图像中匹配的特征点,恢复3D点坐标的关键技术。
原理
- 给定特征点在两帧图像中的投影位置 p 1 , p 2 \mathbf{p}_1,\mathbf{p}_2 p1,p2,以及相机的内参和位姿 𝑅,𝑡,通过以下方式恢复3D点: P = Triangulate ( p 1 , p 2 , R , t ) \mathbf{P}=\text{Triangulate}(\mathbf{p}_1,\mathbf{p}_2,\mathbf{R},\mathbf{t}) P=Triangulate(p1,p2,R,t)
- 基于几何投影模型,通过线性方程或非线性优化求解3D点坐标。
验证三角化结果
- 测量点是否位于相机前方。
- 计算重投影误差是否足够小。
3D-2D: PnP问题
PnP(Perspective-n-Point)问题是已知3D点和对应的2D投影,求解相机位姿的问题。
直接线性变换(DLT)
- 基于线性方程求解相机的位姿: p i = K [ R ∣ t ] P i \mathbf{p}_i=\mathbf{K}[\mathbf{R}|\mathbf{t}]\mathbf{P}_i pi=K[R∣t]Pi
- 通过线性求解,快速但精度不高。
P3P方法
- 给定3对3D点和2D点的匹配关系,利用几何关系直接求解位姿。
- 通常结合RANSAC算法,剔除外点,提高鲁棒性。
最小化重投影误差
通过非线性优化,最小化重投影误差以提高精度:
x
∗
=
arg
min
x
∑
i
∥
p
i
−
h
(
P
i
,
x
)
∥
2
\mathbf{x}^*=\arg\min_\mathbf{x}\sum_i\|\mathbf{p}_i-h(\mathbf{P}_i,\mathbf{x})\|^2
x∗=argxmini∑∥pi−h(Pi,x)∥2
其中 ℎ(⋅) 是投影函数。
3D-3D: ICP方法
3D-3D配准问题是已知两组3D点云,求解它们之间的刚体变换(旋转矩阵 𝑅 和平移向量 𝑡)。
SVD方法
- 基于点云的最近邻匹配,构造误差函数:
E ( R , t ) = ∑ i ∥ q i − ( R p i + t ) ∥ 2 E(\mathbf{R},\mathbf{t})=\sum_i\|\mathbf{q}_i-(\mathbf{R}\mathbf{p}_i+\mathbf{t})\|^2 E(R,t)=i∑∥qi−(Rpi+t)∥2
其中 p i \mathbf{p}_i pi和 q i \mathbf{q}_i qi 是两帧中的对应3D点。 - 使用奇异值分解(SVD)求解最优刚体变换。
非线性优化方法
- 在初始位姿的基础上,利用非线性优化方法(如高斯-牛顿或LM算法)进一步减少误差,提高精度。
- 优化目标:最小化点到点或点到平面的距离误差。
总结
视觉里程计通过特征点法提取信息,结合几何约束(2D-2D对极几何、三角测量)估计相机位姿,并通过PnP(3D-2D)和ICP(3D-3D)实现更复杂场景下的位姿求解。这些方法构成了视觉里程计的核心技术体系,为SLAM中的前端跟踪提供了坚实的数学基础和实现方案。