SOME/IP 协议详解——序列化

news2025/1/3 20:55:13

文章目录

  • 0. 概述
  • 1.基本数据序列化
  • 2.字符串序列化
    • 2.1 字符串通用规则
    • 2.2 固定长度字符串规则
    • 2.3 动态长度字符串规则
  • 3.结构体序列化
  • 4. 带有标识符和可选成员的结构化数据类型
  • 5. 数组
    • 5.1 固定长度数组
    • 5.2 动态长度数组
    • 5.3 Enumeration(枚举)
    • 5.4 Bitfield(位域)
    • 5.5 Union/Variant(联合 / 变体)
  • 总结

0. 概述

SOME/IP序列化分为四部分,基本数据序列化,字符串序列化,结构体序列化,数组序列化。

1.基本数据序列化

TypeDescriptionSize [bit]Remark
booleanTRUE/FALSE value8FALSE (0), TRUE (1)
uint8unsigned Integer8
uint16unsigned Integer16
uint32unsigned Integer32
sint8signed Integer8
sint16signed Integer16
sint32signed Integer32
float32floating point number32IEEE 754 binary32 (Single Precision)
float64floating point number64IEEE 754 binary64 (Double Precision)

对于每个参数的字节序,是由配置来决定的(大小端顺序)。这就好比是给一群数字 “小朋友” 排队,不同的配置会让他们站成不同的顺序。

在对布尔值进行评估时,只看 uint8 中的最低位,其他位都被忽略。

这些基本数据类型在 SOME/IP 协议中就像是一个个小积木,通过不同的组合和排列,构建起了复杂的数据结构,支撑着整个协议的数据处理和传输功能。

2.字符串序列化

2.1 字符串通用规则

  • 编码支持
    • 支持不同的 Unicode 编码,包括 UTF - 8、UTF - 16BE 和 UTF - 16LE。
  • 字符串终止
    • UTF - 16LE 和 UTF - 16BE 字符串应以零字符(‘\0’)终止,且至少有两个 0x00 字节。
    • 所有字符串应始终以字节顺序标记(BOM)开始,BOM 应包含在固定长度和动态长度字符串中,用于检测编码。

2.2 固定长度字符串规则

  • 字符串终止
    • 固定长度字符串也应以 ‘\0’ 字符终止,且字符串长度(包括 ‘\0’ 字节)在数据类型定义中指定,未使用空间用 ‘\0’ 填充,BOM 包含在长度内。
  • 长度检查
    • 如果固定长度字符串长于预期,反序列化应停止,消息视为格式错误。
    • 如果固定长度字符串短于预期但正确以 ‘\0’ 终止,可接受。
    • 如果固定长度字符串短于预期且未正确以 ‘\0’ 终止,反序列化应停止,消息视为格式错误。

2.3 动态长度字符串规则

  • 长度字段
    • 动态长度字符串应以长度字段开始,长度以字节为单位测量,长度字段在 BOM 之前,BOM 包含在长度内,字符串以 ‘\0’ 终止,字符串(包括 ‘\0’ 终止)的最大字节数由数据类型定义得出。
  • 长度定义
    • 动态长度字符串的长度字段有 8、16 或 32 位可选,由接口规范决定,未指定时默认 32 位。长度字段的值不包括长度字段本身。
    • 如果动态长度字符串长于预期,反序列化应停止,消息视为格式错误。
  • 替代传输方式
    • 除了将应用程序字符串作为带有 BOM 和 ‘\0’ 终止的 SOME/IP 字符串传输外,还可将其作为普通动态长度数组传输(不带 BOM 和 ‘\0’ 终止),但应用程序需自行处理字符串,如编码转换。

概括而言:
定长字符串格式【BOM】【data】【‘\0’】
变长字符串格式【length】【BOM】【data】【‘\0’】

lenth大小默认为4byte,包含BOM,data和结束符的长度总和。

3.结构体序列化

  • 总体原则
    • 结构体序列化要依循内存布局,像按图施工一样逐个参数序列化到缓冲区,且要考虑内存对齐。
  • 示例说明
    在这里插入图片描述
    以几个结构体及其内部成员(如 Struct_1 包含 uint32 a 和 float32 b [2] 等)展示序列化过程,如同按盒子内物品摆放顺序处理。
  • 关键规则
    • 填充数据:不会自动插入无用填充数据,保证数据紧凑。
    • 长度字段:可配置插入 8、16 或 32 位长度字段来标识结构体传输字节数,长度不包含长度字段自身。
    • 长度检查处理:接收长度大于定义时只按定义处理,多余跳过;长度小于且无法补全缺失数据时反序列化中止,视为格式错误。
    • 序列化顺序:按深度优先遍历顺序进行序列化,确保成员处理无遗漏或重复。

4. 带有标识符和可选成员的结构化数据类型

  • 总体目的

    • 为了实现更好的前向和后向兼容性,在结构体成员或方法参数前可添加额外的数据标识符(Data ID)。接收方可以通过这些标识符跳过未知成员或参数,保证系统在处理新旧数据时的兼容性。
  • 标识符规则

    • 唯一性:数据标识符在一个 struct 的直接成员或方法的参数中必须唯一,但不需要在不同 struct 或方法之间保持唯一。
    • 配置一致性:对于 struct 同一层级的所有成员,要么全部定义数据标识符,要么全部不定义;对于方法的所有参数,也是如此。
  • 数据类型编码

    • 除了数据标识符,还使用 “线类型(wire type)” 来编码成员的数据类型,两者共同组成 “标签(tag)”。
    • 标签结构:标签长度为两个字节,其布局包含多个部分,包括保留位、线类型、数据标识符等。例如,保留位在第 7 位,线类型在第 6 - 4 位,数据标识符在第 3 - 0 位和第二个字节的全部 8 位。
      在这里插入图片描述
  • 不同数据类型的序列化规则

    • 基本数据类型:如果序列化的成员或参数是基本数据类型(线类型 0 - 3)且配置了数据标识符,标签应直接插入在成员或参数前面,并且不插入长度字段。
    • 复杂数据类型:如果是复杂数据类型(线类型 4 - 7)且配置了数据标识符,标签应插入在长度字段前面,并且必须插入长度字段。
  • 长度字段相关规则

    • 长度字段始终包含到 struct 中下一个标签的长度。对于 struct、动态长度字符串、动态长度数组、联合类型等,都有相应的长度字段规则,且这些类型的长度字段大小在配置中应大于 0,并且通常应配置为相同大小,以便在处理未知成员或参数时,接收方能够根据统一的规则来解析数据。
  • 可选成员处理

    • 序列化器在序列化时,如果可选成员被标记为不可用,不应将其包含在序列化字节流中;反序列化器在反序列化时,应忽略字节流中不存在的可选成员。
  • 未知数据处理

    • 如果反序列化器读取到未知的数据标识符,它应根据线类型和长度字段的信息跳过未知的成员或参数;如果在字节流中找不到必需的(非可选)成员或参数,反序列化应中止,并将消息视为格式错误。
  • 接口版本与序列化兼容性

    • 如果对现有服务接口引入带标签的序列化,而之前未使用标签,应增加主要接口版本来指示这一变化。
  • 带有标签的序列化示例
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5. 数组

5.1 固定长度数组

  • 长度定义

    • 固定长度数组的长度由数据类型定义确定。可以将其视为相同类型元素的重复排列。
    • 例如,一维固定长度数组携带指定数量(n)的相同类型元素,其布局按照顺序依次排列,元素大小乘以元素数量就是数组占用的空间大小。
      在这里插入图片描述
    • 多维固定长度数组的序列化遵循编程语言中的内存布局(行主序)。
      在这里插入图片描述
  • 长度处理与错误情况

    • 如果接收到的固定长度数组长度大于预期(根据数据类型定义),只解释指定数量的元素,多余字节根据长度字段跳过。
    • 如果长度小于预期且接收方无法提供缺失数据的替代值,反序列化将中止,消息视为格式错误。

5.2 动态长度数组

  • 布局与长度字段

    • 动态长度数组的布局基于固定长度数组,可以在数组开头使用可选的长度字段来指定数组字节长度。
    • 长度字段长度可以是 0、8 位、16 位或 32 位,由配置决定。当长度字段设置为 0 位时,数组元素数量固定,此时相当于固定长度数组。
      -长度不包括长度字段本身大小。
      在这里插入图片描述
  • 多维数组特点

    • 在多维动态长度数组中,每个不同维度的子数组都有自己的长度字段。

    • 如果需要静态分配缓冲区大小,数据类型定义应指定每个维度的最大长度。
      在这里插入图片描述

    • 当测量字节长度时,复杂多维数组在反序列化时可以跳过。

    • SOME/IP 支持同一维度中列和行的不同长度,每个动态长度数组前都需要有长度指示。

  • 长度处理与错误情况

    • 如果动态长度数组长度大于预期,只解释指定数量的元素,多余字节根据长度字段跳过。

5.3 Enumeration(枚举)

  • 枚举在 SOME/IP 中不作为独立类型考虑,而是被当作无符号整数数据类型传输。

5.4 Bitfield(位域)

  • 位域应作为无符号数据类型(uint8/uint16/uint32)传输,数据类型定义可以指定每个位的名称和值。

5.5 Union/Variant(联合 / 变体)

  • 联合用于在网络上传输具有不同数据类型的可选数据,由长度字段、类型选择器和有效负载组成。
    在这里插入图片描述

  • 长度字段定义数据和填充字节的大小(不包括长度字段和类型字段本身),类型字段指定数据类型,有效负载根据类型字段进行序列化。

  • 长度字段长度由配置决定,可以是 32 位、16 位、8 位或 0 位,当长度字段为 0 位时,联合中的所有类型必须长度相同。

  • 类型字段的值由配置为每个联合单独定义,其中 0 值保留用于空类型(表示空联合),并且是否允许空联合也由配置决定。

总结

整体来说,SOME/IP的序列化和反序列化比较死板,不够灵活。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2268817.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTML5实现好看的喜庆圣诞节网站源码

HTML5实现好看的喜庆圣诞节网站源码 前言一、设计来源1.1 主界面1.2 圣诞介绍界面1.3 圣诞象征界面1.4 圣诞活动界面1.5 圣诞热度界面1.6 圣诞纪念界面1.7 联系我们界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现好看的喜庆圣诞节网站源码,圣…

嵌入式开发中的机器人表情绘制

机器人的表情有两种,一种是贴图,一钟是调用图形API自绘。 贴图效果相对比较好,在存储空间大的情况下是可以采用的。 自绘比较麻烦,但在资源和空缺少的情况下,也是很有用的。而且自绘很容易通过调整参数加入随机效果&…

opencv实现KNN算法识别图片数字

KNN算法实现识别图片数字 目录 KNN算法实现识别图片数字图片基本情况图片数据 图片数字识别图片数据处理及预测其它数字图片正确率预测 图片基本情况 图片 数据 图片像素是2000x1000,即高(行)1000,宽(列)2000&#xf…

美畅物联丨视频上云网关获取视频流地址供第三方调用的方法

在视频监控与流媒体传输领域,视频流地址的获取与调用是极为关键的环节。视频上云网关作为一款高效且稳定的视频传输设备,为获取视频流地址提供了便捷途径,从而使外部系统或平台能够方便地进行调用。今天我们就来讨论一下如何在视频上云网关上…

MySQL数据库——索引结构之B+树

本文先介绍数据结构中树的演化过程,之后介绍为什么MySQL数据库选择了B树作为索引结构。 文章目录 树的演化为什么其他树结构不行?为什么不使用二叉查找树(BST)?为什么不使用平衡二叉树(AVL树)&a…

一起学Git【第六节:查看版本差异】

git diff是 Git 版本控制系统中用于展示差异的强大工具。他可以用于查看文件在工作区、暂存区和版本库之间的差异、任意两个指定版本之间的差异和两个分支之间的差异等,接下来进行详细的介绍。 1.显示工作区与暂存区之间的差异 # 显示工作区和暂存区之间的差异,后面不加参数…

Fetch处理大模型流式数据请求与解析

为什么有的大模型可以一次返回多个 data? Server-Sent Events (SSE):允许服务器连续发送多个 data: 行,每个代表一个独立的数据块。 流式响应:大模型服务通常以流式响应方式返回数据,提高响应速度。 批量处理&#x…

期权懂|个股期权的流动性如何?

锦鲤三三每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 个股期权的流动性如何? 个股期权作为场外交易工具,具有较高的灵活性。场外交易意味着交易双方可以直接协商交易条款,这有助于满足不同投资者的…

国产低代码框架zdppy开发笔记002 标准的接口响应

前言 通过前面的学习, 我们已经知道了zdppy_api和zdppy_req的基本用法, 接下来我们会在学习中多次用到这两个框架. 我们已经知道了该如何响应一个字符串,但是我们该如何响应json数据呢? 在zdppy_api中,我们定义了一组规范的API响应, 我们慢慢来看看. 规范的响应 首先来看…

Linux | 零基础Ubuntu解压RaR等压缩包文件

目录 介绍 案例分析 安装工具 解压实践 介绍 RAR是一种专利文件格式,用于数据压缩与归档打包,开发者为尤金罗谢尔(俄语:Евгений Лазаревич Рошал,拉丁转写:Yevgeny Lazarevich R…

Python基于卷积神经网络的车牌识别系统开发与实现

1. 简介 车牌识别是人工智能在交通领域的重要应用,广泛用于高速违章检测、停车场管理和智能交通系统等场景。本系统通过基于卷积神经网络(CNN)的深度学习算法,结合 Python 和 MySQL 实现车牌的快速识别与管理。 系统特点&#x…

stm32内部flash在线读写操作

stm32内部flash在线读写操作 📍相关开源库文章介绍《STM32 利用FlashDB库实现在线扇区数据管理不丢失》 ✨不同系列,内部flash编程有所区别。例如stm32f1是按照页擦除,半字(16bit)或全字(32bit)数据写入;st…

IDEA | SpringBoot 项目中使用 Apifox 上传接口

目录 1 安装 Apifox Helper 插件2 获取 Apifox 的 API 访问令牌3 IDEA 中设置 API 访问令牌4 IDEA 中上传接口5 常见问题5.1 如何自动设置目录名5.2 如何自动设置接口名5.3 如何更改上传位置 Apifox 官方指南: https://apifox.com/help/applications-and-p…

Leetcode 10-正则表达式匹配/ 剑指 Offer 19. 正则表达式匹配

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符 ‘*’ 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖 整个 字符串 s 的,而不是部分字符串。 题解 字符串匹配多…

学习vue3的笔记

一、vue和react的对比 1、基础介绍 vue:https://cn.vuejs.org/ vue3是2020年创建的 react:https://react.dev/ react是一个2013年开源的JavaScript库,严格意义上来说不是一个框架 2、diff算法 两个框架采用的都是同级对比策略 两节点对…

基于STM32的智能家居环境监控系统设计

目录 引言系统设计 硬件设计软件设计系统功能模块 环境监控模块控制模块显示模块系统实现 硬件实现软件实现系统调试与优化结论与展望 1. 引言 随着智能家居技术的发展,环境监控系统已经成为家居管理的重要组成部分。智能家居环境监控系统通过实时监测室内温度、湿…

【MySQL】搞懂mvcc、read view:MySQL事务原理深度剖析

前言:本节内容是事务里面最难的一部分, 就是理解mvcc快照读和read view。这两个部分需要了解隔离性里面的四种隔离级别。 博主之前讲过,但是担心友友们不了解, 所以这里开头进行了复习。 下面开始我们的学习吧! ps&…

jmeter设置tps、响应时间监测时间间隔

jmeter设置tps、响应时间监测时间间隔 思路: 1、设置tps和响应时间插件的采集时间间隔,然后运行jmeter脚本; 2、先按默认配置跑出jtl文件保存下来,再添加tps和响应时间插件,设置采集时间间隔后,导入jtl文件…

Qt 12.30 day5

day5_testppp.proQT core gui texttospeech widget.h#ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent>//定时器事件类 #include <QTimer>//时间事件类 #include <QTime>//时间类 #include <QTextToSpeech>//…

玩转OCR | 腾讯云智能结构化OCR初体验

随着数字化进程的加速&#xff0c;光学字符识别&#xff08;OCR&#xff09;技术已逐渐成为提高企业生产力、优化工作流的重要工具。腾讯云智能结构化OCR凭借其领先的技术、广泛的应用场景和灵活的定制化能力&#xff0c;正在帮助各行业客户更高效地进行文档处理与数据提取。本…