PaddleOCROCR关键信息抽取训练过程

news2025/1/3 14:38:22

步骤1:python版本3.8.20

步骤2:下载代码,安装依赖

git clone https://gitee.com/PaddlePaddle/PaddleOCR.git

pip uninstall opencv-python -y # 安装PaddleOCR的依赖 !

pip install -r requirements.txt # 安装关键信息抽取任务的依赖 !

pip install -r ./ppstructure/kie/requirements.txt

步骤3:安装paddlepaddle_gpu

pip install paddlepaddle_gpu==2.5.2

步骤4:下载数据集

[XFUND](https://github.com/doc-analysis/XFUND)

数据集说明:

  建议将训练图片放入同一个文件夹,并用一个文本文件记录图片路径和标签,文本文件里的内容如下:

```python linenums="1"
" 图像文件名 图像标注信息 "
zh_train_0.jpg [{"transcription": "汇丰晋信", "label": "other", "points": [[104, 114], [530, 114], [530, 175], [104, 175]], "id": 1, "linking": []}, {"transcription": "受理时间:", "label": "question", "points": [[126, 267], [266, 267], [266, 305], [126, 305]], "id": 7, "linking": [[7, 13]]}, {"transcription": "2020.6.15", "label": "answer", "points": [[321, 239], [537, 239], [537, 285], [321, 285]], "id": 13, "linking": [[7, 13]]}]
zh_train_1.jpg [{"transcription": "中国人体器官捐献", "label": "other", "points": [[544, 459], [954, 459], [954, 517], [544, 517]], "id": 1, "linking": []}, {"transcription": ">编号:MC545715483585", "label": "other", "points": [[1462, 470], [2054, 470], [2054, 543], [1462, 543]], "id": 10, "linking": []}, {"transcription": "CHINAORGANDONATION", "label": "other", "points": [[543, 516], [958, 516], [958, 551], [543, 551]], "id": 14, "linking": []}, {"transcription": "中国人体器官捐献志愿登记表", "label": "header", "points": [[635, 793], [1892, 793], [1892, 904], [635, 904]], "id": 18, "linking": []}]
...
```

   文本文件中默认请将图片路径和图片标签用 `\t` 分割,如用其他方式分割将造成训练报错。
其中图像标注信息字符串经过json解析之后可以得到一个列表信息,列表中每个元素是一个字典,存储了每个文本行的需要信息,各个字段的含义如下。

- transcription: 存储了文本行的文字内容
- label: 该文本行内容所属的类别
- points: 存储文本行的四点位置信息
- id: 存储文本行的id信息,用于RE任务的训练
- linking: 存储文本行的之间的连接信息,用于RE任务的训练

 (2)验证集

验证集构建方式与训练集相同。

(3)字典文件

训练集与验证集中的文本行包含标签信息,所有标签的列表存在字典文件中(如`class_list.txt`),字典文件中的每一行表示为一个类别名称。

以XFUND_zh数据为例,共包含4个类别,字典文件内容如下所示。

```text linenums="1"
OTHER
QUESTION
ANSWER
HEADER
```
在标注文件中,每个标注的文本行内容的`label`字段标注信息需要属于字典内容。

最终数据集应有如下文件结构:

```text linenums="1"
|-train_data
|-data_name
|- train.json
|- train
|- zh_train_0.png
|- zh_train_1.jpg
| ...
|- val.json
|- val
|- zh_val_0.png
|- zh_val_1.jpg
| ...
```
- 标注文件中的类别信息不区分大小写,如`HEADER`与`header`会被解析为相同的类别id,因此在标注的时候,不能使用小写处理后相同的字符串表示不同的类别。
- 在整理标注文件的时候,建议将other这个类别(其他,无需关注的文本行可以标注为other)放在第一行,在解析的时候,会将`other`类别的类别id解析为0,后续不会对该类进行可视化。

步骤5:在项目跟目录新建train_data,将XFUND解压到该目录中

步骤6:开始训练、评估kie模型

### 2.1. 启动训练

如果你没有使用自定义数据集,可以使用PaddleOCR中已经处理好的XFUND_zh数据集进行快速体验。

```bash linenums="1"
mkdir train_data
cd train_data
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar && tar -xf XFUND.tar
cd ..
```

如果不希望训练,直接体验后面的模型评估、预测、动转静、推理的流程,可以下载PaddleOCR中提供的预训练模型,并跳过2.1部分。

使用下面的方法,下载基于XFUND数据的SER与RE任务预训练模型。

```bash linenums="1"
mkdir pretrained_model
cd pretrained_model
# 下载并解压SER预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar & tar -xf ser_vi_layoutxlm_xfund_pretrained.tar

# 下载并解压RE预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar & tar -xf re_vi_layoutxlm_xfund_pretrained.tar
```

开始训练:

- 如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false
- PaddleOCR在训练时,会默认下载VI-LayoutXLM预训练模型,这里无需预先下载。

```bash linenums="1"
# GPU训练 支持单卡,多卡训练
# 训练日志会自动保存到 配置文件中"{Global.save_model_dir}" 下的train.log文件中

# SER单卡训练
python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml

# SER多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml

# RE任务单卡训练
python3 tools/train.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml
```

以SER任务为例,正常启动训练后,会看到以下log输出:

```bash linenums="1"
[2022/08/08 16:28:28] ppocr INFO: epoch: [1/200], global_step: 10, lr: 0.000006, loss: 1.871535, avg_reader_cost: 0.28200 s, avg_batch_cost: 0.82318 s, avg_samples: 8.0, ips: 9.71838 samples/s, eta: 0:51:59
[2022/08/08 16:28:33] ppocr INFO: epoch: [1/200], global_step: 19, lr: 0.000018, loss: 1.461939, avg_reader_cost: 0.00042 s, avg_batch_cost: 0.32037 s, avg_samples: 6.9, ips: 21.53773 samples/s, eta: 0:37:55
[2022/08/08 16:28:39] ppocr INFO: cur metric, precision: 0.11526348939743859, recall: 0.19776657060518732, hmean: 0.14564265817747712, fps: 34.008392345050055
[2022/08/08 16:28:45] ppocr INFO: save best model is to ./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
[2022/08/08 16:28:45] ppocr INFO: best metric, hmean: 0.14564265817747712, precision: 0.11526348939743859, recall: 0.19776657060518732, fps: 34.008392345050055, best_epoch: 1
[2022/08/08 16:28:51] ppocr INFO: save model in ./output/ser_vi_layoutxlm_xfund_zh/latest
```

log 中自动打印如下信息:

| 字段 | 含义 |
| :----: | :------: |
| epoch | 当前迭代轮次 |
| iter | 当前迭代次数 |
| lr | 当前学习率 |
| loss | 当前损失函数 |
| reader_cost | 当前 batch 数据处理耗时 |
| batch_cost | 当前 batch 总耗时 |
| samples | 当前 batch 内的样本数 |
| ips | 每秒处理图片的数量 |

PaddleOCR支持训练和评估交替进行, 可以在 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 中修改 `eval_batch_step` 设置评估频率,默认每19个iter评估一次。评估过程中默认将最佳hmean模型,保存为 `output/ser_vi_layoutxlm_xfund_zh/best_accuracy/` 。

如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。

**提示:** 可通过 -c 参数选择 `configs/kie/` 路径下的多种模型配置进行训练,PaddleOCR支持的信息抽取算法可以参考[前沿算法列表](../../algorithm/overview.md)。

如果你希望训练自己的数据集,需要修改配置文件中的数据配置、字典文件以及类别数。

以 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 为例,修改的内容如下所示。

```yaml linenums="1"

Architecture:
# ...
Backbone:
name: LayoutXLMForSer
pretrained: True
mode: vi
# 由于采用BIO标注,假设字典中包含n个字段(包含other)时,则类别数为2n-1; 假设字典中包含n个字段(不含other)时,则类别数为2n+1。否则在train过程会报:IndexError: (OutOfRange) label value should less than the shape of axis dimension 。
num_classes: &num_classes 7

PostProcess:
name: kieSerTokenLayoutLMPostProcess
# 修改字典文件的路径为你自定义的数据集的字典路径
class_path: &class_path train_data/XFUND/class_list_xfun.txt

Train:
dataset:
name: SimpleDataSet
# 修改为你自己的训练数据目录
data_dir: train_data/XFUND/zh_train/image
# 修改为你自己的训练数据标签文件
label_file_list:
- train_data/XFUND/zh_train/train.json
...
loader:
# 训练时的单卡batch_size
batch_size_per_card: 8
...

Eval:
dataset:
name: SimpleDataSet
# 修改为你自己的验证数据目录
data_dir: train_data/XFUND/zh_val/image
# 修改为你自己的验证数据标签文件
label_file_list:
- train_data/XFUND/zh_val/val.json
...
loader:
# 验证时的单卡batch_size
batch_size_per_card: 8
```

**注意,预测/评估时的配置文件请务必与训练一致。**

### 2.2. 断点训练

如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定`Architecture.Backbone.checkpoints`指定要加载的模型路径:

```bash linenums="1"
python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
```

**注意**:

- `Architecture.Backbone.checkpoints`的优先级高于`Architecture.Backbone.pretrained`,需要加载之前训练好的训练模型进行模型微调、恢复训练、模型评估时,需要使用`Architecture.Backbone.checkpoints`指定模型参数路径;如果需要使用默认提供的通用预训练模型进行训练,则需要指定`Architecture.Backbone.pretrained`为`True`,同时指定`Architecture.Backbone.checkpoints`为空(`null`)。
- LayoutXLM系列模型均是调用了PaddleNLP中的预训练模型,模型加载与保存的逻辑与PaddleNLP基本一致,因此在这里不需要指定`Global.pretrained_model`或者`Global.checkpoints`参数;此外,LayoutXLM系列模型的蒸馏训练目前不支持断点训练。

### 2.3. 混合精度训练

coming soon!

### 2.4. 分布式训练

多机多卡训练时,通过 `--ips` 参数设置使用的机器IP地址,通过 `--gpus` 参数设置使用的GPU ID:

```bash linenums="1"
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml
```

**注意:** (1)采用多机多卡训练时,需要替换上面命令中的ips值为您机器的地址,机器之间需要能够相互ping通;(2)训练时需要在多个机器上分别启动命令。查看机器ip地址的命令为`ifconfig`;(3)更多关于分布式训练的性能优势等信息,请参考:[分布式训练教程](../blog/distributed_training.md)。

### 2.5. 知识蒸馏训练

PaddleOCR支持了基于U-DML知识蒸馏的关键信息抽取模型训练过程,配置文件请参考:[ser_vi_layoutxlm_xfund_zh_udml.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml),更多关于知识蒸馏的说明文档请参考:[知识蒸馏说明文档](../model_compress/knowledge_distillation.md)。

**注意**: PaddleOCR中LayoutXLM系列关键信息抽取模型的保存与加载逻辑与PaddleNLP保持一致,因此在蒸馏的过程中仅保存了学生模型的参数,如果希望使用保存的模型进行评估,需要使用学生模型的配置(上面的蒸馏文件对应的学生模型为[ser_vi_layoutxlm_xfund_zh.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml))

### 2.6. 其他训练环境

- Windows GPU/CPU
在Windows平台上与Linux平台略有不同:
Windows平台只支持`单卡`的训练与预测,指定GPU进行训练`set CUDA_VISIBLE_DEVICES=0`
在Windows平台,DataLoader只支持单进程模式,因此需要设置 `num_workers` 为0;

- macOS
不支持GPU模式,需要在配置文件中设置`use_gpu`为False,其余训练评估预测命令与Linux GPU完全相同。

- Linux DCU
DCU设备上运行需要设置环境变量 `export HIP_VISIBLE_DEVICES=0,1,2,3`,其余训练评估预测命令与Linux GPU完全相同。

## 3. 模型评估与预测

### 3.1. 指标评估

训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Architecture.Backbone.checkpoints`指向保存的参数文件。评估数据集可以通过 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 修改Eval中的 `label_file_path` 设置。

```bash linenums="1"
# GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
```

会输出以下信息,打印出precision、recall、hmean等信息。

```bash linenums="1"
[2022/08/09 07:59:28] ppocr INFO: metric eval ***************
[2022/08/09 07:59:28] ppocr INFO: precision:0.697476609016161
[2022/08/09 07:59:28] ppocr INFO: recall:0.8861671469740634
[2022/08/09 07:59:28] ppocr INFO: hmean:0.7805806758686339
[2022/08/09 07:59:28] ppocr INFO: fps:17.367364606899105
```

### 3.2. 测试信息抽取结果

使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。

默认预测的图片存储在 `infer_img` 里,通过 `-o Architecture.Backbone.checkpoints` 加载训练好的参数文件:

根据配置文件中设置的 `save_model_dir` 和 `save_epoch_step` 字段,会有以下几种参数被保存下来:

```text linenums="1"
output/ser_vi_layoutxlm_xfund_zh/
├── best_accuracy
├── metric.states
├── model_config.json
├── model_state.pdparams
├── best_accuracy.pdopt
├── config.yml
├── train.log
├── latest
├── metric.states
├── model_config.json
├── model_state.pdparams
├── latest.pdopt
```

其中 best_accuracy.*是评估集上的最优模型;latest.* 是最新保存的一个模型。

预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 完成了模型的训练过程。

您可以使用如下命令进行中文模型预测。

```bash linenums="1"
python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg
```

预测图片如下所示,图片会存储在`Global.save_res_path`路径中。

![image-20240710082046188](./images/image-20240710082046188.jpg)

预测过程中,默认会加载PP-OCRv3的检测识别模型,用于OCR的信息抽取,如果希望加载预先获取的OCR结果,可以使用下面的方式进行预测,指定`Global.infer_img`为标注文件,其中包含图片路径以及OCR信息,同时指定`Global.infer_mode`为False,表示此时不使用OCR预测引擎。

```bash linenums="1"
python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.infer_img=./train_data/XFUND/zh_val/val.json Global.infer_mode=False
```

对于上述图片,如果使用标注的OCR结果进行信息抽取,预测结果如下。

![image-20240710082059968](./images/image-20240710082046188.jpg)

可以看出,部分检测框信息更加准确,但是整体信息抽取识别结果基本一致。

在RE任务模型预测时,需要先给出模型SER结果,因此需要同时加载SER的配置文件与模型权重,示例如下。

```bash linenums="1"
python3 ./tools/infer_kie_token_ser_re.py \
-c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \
-o Architecture.Backbone.checkpoints=./pretrain_models/re_vi_layoutxlm_udml_xfund_zh/best_accuracy/ \
Global.infer_img=./train_data/XFUND/zh_val/image/ \
-c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
-o_ser Architecture.Backbone.checkpoints=pretrain_models/ \
ser_vi_layoutxlm_udml_xfund_zh/best_accuracy/
```

预测结果如下所示。

![image-20240710082109713](./images/image-20240710082046188.jpg)

如果希望使用标注或者预先获取的OCR信息进行关键信息抽取,同上,可以指定`Global.infer_mode`为False,指定`Global.infer_img`为标注文件。

```bash linenums="1"
python3 ./tools/infer_kie_token_ser_re.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./pretrain_models/re_vi_layoutxlm_udml_xfund_zh/re_layoutxlm_xfund_zh_v4_udml/best_accuracy/ Global.infer_img=./train_data/XFUND/zh_val/val.json Global.infer_mode=False -c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o_ser Architecture.Backbone.checkpoints=pretrain_models/ser_vi_layoutxlm_udml_xfund_zh/best_accuracy/
```

其中`c_ser`表示SER的配置文件,`o_ser` 后面需要加上待修改的SER模型与配置文件,如预训练权重等。

预测结果如下所示。

![image-20240710082117146](./images/image-20240710082046188.jpg)

可以看出,直接使用标注的OCR结果的RE预测结果要更加准确一些。

## 4. 模型导出与预测

### 4.1 模型导出

inference 模型(`paddle.jit.save`保存的模型)
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。

信息抽取模型中的SER任务转inference模型步骤如下:

```bash linenums="1"
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Architecture.Backbone.checkpoints 参数设置待转换的训练模型地址
# Global.save_inference_dir 参数设置转换的模型将保存的地址

python3 tools/export_model.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.save_inference_dir=./inference/ser_vi_layoutxlm
```

转换成功后,在目录下有三个文件:

```text linenums="1"
inference/ser_vi_layoutxlm/
├── inference.pdiparams # inference模型的参数文件
├── inference.pdiparams.info # inference模型的参数信息,可忽略
└── inference.pdmodel # inference模型的模型结构文件
```

信息抽取模型中的RE任务转inference模型步骤如下:

```bash linenums="1"
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Architecture.Backbone.checkpoints 参数设置待转换的训练模型地址
# Global.save_inference_dir 参数设置转换的模型将保存的地址

python3 tools/export_model.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/re_vi_layoutxlm_xfund_zh/best_accuracy Global.save_inference_dir=./inference/re_vi_layoutxlm
```

转换成功后,在目录下有三个文件:

```text linenums="1"
inference/re_vi_layoutxlm/
├── inference.pdiparams # inference模型的参数文件
├── inference.pdiparams.info # inference模型的参数信息,可忽略
└── inference.pdmodel # inference模型的模型结构文件
```

### 4.2 模型推理

VI-LayoutXLM模型基于SER任务进行推理,可以执行如下命令:

```bash linenums="1"
cd ppstructure
python3 kie/predict_kie_token_ser.py \
--kie_algorithm=LayoutXLM \
--ser_model_dir=../inference/ser_vi_layoutxlm \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```

可视化SER结果结果默认保存到`./output`文件夹里面。结果示例如下:

![image-20240710082128694](./images/image-20240710082046188.jpg)

VI-LayoutXLM模型基于RE任务进行推理,可以执行如下命令:

```bash linenums="1"
cd ppstructure
python3 kie/predict_kie_token_ser_re.py \
--kie_algorithm=LayoutXLM \
--re_model_dir=../inference/re_vi_layoutxlm \
--ser_model_dir=../inference/ser_vi_layoutxlm \
--use_visual_backbone=False \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```

RE可视化结果默认保存到`./output`文件夹里面,结果示例如下:

![image-20240710082147184](./images/image-20240710082046188.jpg)

## 5. FAQ

Q1: 训练模型转inference 模型之后预测效果不一致?

**A**:该问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。可以对比训练使用的配置文件中的预处理、后处理和预测时是否存在差异。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2268813.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencv实现KNN算法识别图片数字

KNN算法实现识别图片数字 目录 KNN算法实现识别图片数字图片基本情况图片数据 图片数字识别图片数据处理及预测其它数字图片正确率预测 图片基本情况 图片 数据 图片像素是2000x1000,即高(行)1000,宽(列)2000&#xf…

美畅物联丨视频上云网关获取视频流地址供第三方调用的方法

在视频监控与流媒体传输领域,视频流地址的获取与调用是极为关键的环节。视频上云网关作为一款高效且稳定的视频传输设备,为获取视频流地址提供了便捷途径,从而使外部系统或平台能够方便地进行调用。今天我们就来讨论一下如何在视频上云网关上…

MySQL数据库——索引结构之B+树

本文先介绍数据结构中树的演化过程,之后介绍为什么MySQL数据库选择了B树作为索引结构。 文章目录 树的演化为什么其他树结构不行?为什么不使用二叉查找树(BST)?为什么不使用平衡二叉树(AVL树)&a…

一起学Git【第六节:查看版本差异】

git diff是 Git 版本控制系统中用于展示差异的强大工具。他可以用于查看文件在工作区、暂存区和版本库之间的差异、任意两个指定版本之间的差异和两个分支之间的差异等,接下来进行详细的介绍。 1.显示工作区与暂存区之间的差异 # 显示工作区和暂存区之间的差异,后面不加参数…

Fetch处理大模型流式数据请求与解析

为什么有的大模型可以一次返回多个 data? Server-Sent Events (SSE):允许服务器连续发送多个 data: 行,每个代表一个独立的数据块。 流式响应:大模型服务通常以流式响应方式返回数据,提高响应速度。 批量处理&#x…

期权懂|个股期权的流动性如何?

锦鲤三三每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 个股期权的流动性如何? 个股期权作为场外交易工具,具有较高的灵活性。场外交易意味着交易双方可以直接协商交易条款,这有助于满足不同投资者的…

国产低代码框架zdppy开发笔记002 标准的接口响应

前言 通过前面的学习, 我们已经知道了zdppy_api和zdppy_req的基本用法, 接下来我们会在学习中多次用到这两个框架. 我们已经知道了该如何响应一个字符串,但是我们该如何响应json数据呢? 在zdppy_api中,我们定义了一组规范的API响应, 我们慢慢来看看. 规范的响应 首先来看…

Linux | 零基础Ubuntu解压RaR等压缩包文件

目录 介绍 案例分析 安装工具 解压实践 介绍 RAR是一种专利文件格式,用于数据压缩与归档打包,开发者为尤金罗谢尔(俄语:Евгений Лазаревич Рошал,拉丁转写:Yevgeny Lazarevich R…

Python基于卷积神经网络的车牌识别系统开发与实现

1. 简介 车牌识别是人工智能在交通领域的重要应用,广泛用于高速违章检测、停车场管理和智能交通系统等场景。本系统通过基于卷积神经网络(CNN)的深度学习算法,结合 Python 和 MySQL 实现车牌的快速识别与管理。 系统特点&#x…

stm32内部flash在线读写操作

stm32内部flash在线读写操作 📍相关开源库文章介绍《STM32 利用FlashDB库实现在线扇区数据管理不丢失》 ✨不同系列,内部flash编程有所区别。例如stm32f1是按照页擦除,半字(16bit)或全字(32bit)数据写入;st…

IDEA | SpringBoot 项目中使用 Apifox 上传接口

目录 1 安装 Apifox Helper 插件2 获取 Apifox 的 API 访问令牌3 IDEA 中设置 API 访问令牌4 IDEA 中上传接口5 常见问题5.1 如何自动设置目录名5.2 如何自动设置接口名5.3 如何更改上传位置 Apifox 官方指南: https://apifox.com/help/applications-and-p…

Leetcode 10-正则表达式匹配/ 剑指 Offer 19. 正则表达式匹配

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符 ‘*’ 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖 整个 字符串 s 的,而不是部分字符串。 题解 字符串匹配多…

学习vue3的笔记

一、vue和react的对比 1、基础介绍 vue:https://cn.vuejs.org/ vue3是2020年创建的 react:https://react.dev/ react是一个2013年开源的JavaScript库,严格意义上来说不是一个框架 2、diff算法 两个框架采用的都是同级对比策略 两节点对…

基于STM32的智能家居环境监控系统设计

目录 引言系统设计 硬件设计软件设计系统功能模块 环境监控模块控制模块显示模块系统实现 硬件实现软件实现系统调试与优化结论与展望 1. 引言 随着智能家居技术的发展,环境监控系统已经成为家居管理的重要组成部分。智能家居环境监控系统通过实时监测室内温度、湿…

【MySQL】搞懂mvcc、read view:MySQL事务原理深度剖析

前言:本节内容是事务里面最难的一部分, 就是理解mvcc快照读和read view。这两个部分需要了解隔离性里面的四种隔离级别。 博主之前讲过,但是担心友友们不了解, 所以这里开头进行了复习。 下面开始我们的学习吧! ps&…

jmeter设置tps、响应时间监测时间间隔

jmeter设置tps、响应时间监测时间间隔 思路: 1、设置tps和响应时间插件的采集时间间隔,然后运行jmeter脚本; 2、先按默认配置跑出jtl文件保存下来,再添加tps和响应时间插件,设置采集时间间隔后,导入jtl文件…

Qt 12.30 day5

day5_testppp.proQT core gui texttospeech widget.h#ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent>//定时器事件类 #include <QTimer>//时间事件类 #include <QTime>//时间类 #include <QTextToSpeech>//…

玩转OCR | 腾讯云智能结构化OCR初体验

随着数字化进程的加速&#xff0c;光学字符识别&#xff08;OCR&#xff09;技术已逐渐成为提高企业生产力、优化工作流的重要工具。腾讯云智能结构化OCR凭借其领先的技术、广泛的应用场景和灵活的定制化能力&#xff0c;正在帮助各行业客户更高效地进行文档处理与数据提取。本…

Spring Boot教程之三十九: 使用 Maven 将 Spring Boot 应用程序 Docker 化

如何使用 Maven 将 Spring Boot 应用程序 Docker 化&#xff1f; Docker是一个开源容器化工具&#xff0c;用于在隔离环境中构建、运行和管理应用程序。它方便开发人员捆绑其软件、库和配置文件。Docker 有助于将一个容器与另一个容器隔离。在本文中&#xff0c;为了将Spring B…

模仿微信小程序wx.showModal自定义弹窗,内容可以修改

实现以下弹框样式功能 1.在components新建一个文件showModel.wpy作为组件&#xff0c;复制下面代码 <style lang"less" scoped> .bg_model {display: flex;justify-content: center;align-items: center;// 弹框背景.bg_hui {width: 100%;height: 100%;posi…