【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11

news2025/1/1 13:02:31

文章目录

  • 一、算法概念11
  • 二、算法原理
    • (一)感知机
    • (二)多层感知机
      • 1、隐藏层
      • 2、激活函数
        • sigma函数
        • tanh函数
        • ReLU函数
      • 3、反向传播算法
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、MLP分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、MLP回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念11

什么是多层感知机?
  多层感知机 (Multilayer Perceptron,MLP) 是一种人工神经网络,由多层神经元或节点组成,这些神经元或节点以分层结构排列。它是最简单且使用最广泛的神经网络之一,尤其适用于分类和回归等监督学习任务。
  多层感知器运作的核心原理在于反向传播,是用于训练网络的关键算法。在反向传播过程中,网络通过将误差从输出层反向传播到输入层来调整其权重和偏差。这个迭代过程可以微调模型的参数,使其能够随着时间的推移做出更准确的预测。
  MLP 通常包括以下部分:
  输入层:接收输入数据并将其传递到隐藏层。输入层中的神经元数量等于输入特征的数量。
  隐藏层:由一层或多层神经元组成,用于执行计算并转换输入数据。可以调整每层  中的隐藏层和神经元的数量,以优化网络性能。
  激活函数:对隐藏层中每个神经元的输出应用非线性变换。常见的激活函数包括 Sigmoid、ReLU、tanh 等。
  输出层:网络的最终输出,例如分类标签或回归目标。输出层中的神经元数量取决于具体的数据,例如分类问题中的类别数量。
  权重和偏差:可调节参数,决定相邻层神经元之间的连接强度以及每个神经元的偏差。这些参数在训练过程中学习,以尽量减少网络预测与实际目标值之间的差异。
  损失函数:衡量网络预测与实际目标值之间的差异。MLP 的常见损失函数包括回归任务的均方误差和分类任务的交叉熵。
  MLP 使用梯度下降等优化算法反向传播进行训练,根据损失函数的梯度迭代调整权重和偏差。这个过程持续到网络收敛到一组可最小化损失函数的最佳参数。

二、算法原理

(一)感知机

  感知机由两层神经元组成,输入层接收外界信号后传递给输出层,如下图所示,
在这里插入图片描述
  感知机模型就是尝试找到一条直线,能够把所有的二元类别分离开,给定输入 x \mathbf{x} x ,权重 W \mathbf{W} W ,和偏移 b b b ,感知机输出:
o = σ ( ⟨ w , x ⟩ + b ) o=\sigma\left( \langle\mathbf{w}, \mathbf{x} \rangle+b \right) o=σ(w,x+b)
σ ( x ) = { 1   x > 0 − 1   x ≤ 0 \quad\sigma( x )=\left\{\begin{array} {l l} {{1}} & {{\mathrm{~} x > 0}} \\ {{-1}} & {{\mathrm{~} x\leq0}} \\ \end{array} \right. σ(x)={11 x>0 x0
  初始化权重向量 w 和偏置 b,然后对于分类错误的样本不断更新w和b,直到所有样本都被正确分类。等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
ℓ ( y , x , w ) = max ⁡ ( 0 , − y ⟨ w , x ⟩ ) \ell( y, {\bf x}, {\bf w} )=\operatorname* {m a x} ( 0,-y \langle{\bf w}, {\bf x} \rangle) (y,x,w)=max(0,yw,x⟩)
  感知机只能产生线性分割面,感知机算法的训练过程如下。
在这里插入图片描述

(二)多层感知机

1、隐藏层

  多层感知机则是在单层神经网络的基础上引入一个或多个隐藏层,使神经网络有多个网络层,下图为两个多层感知机示意图,分别为单隐层和双隐层
在这里插入图片描述
在这里插入图片描述
  多层感知机中的隐藏层和输出层都是全连接层,输入 X ∈ R n × d X \in\mathbb{R}^{n \times d} XRn×d ,其中, n n n 是批量大小, d d d 是输入特征的数量。输出 O ∈ R n × q O \in\mathbb{R}^{n \times q} ORn×q ,其中 q q q 是输出单元的数量。
  设隐藏层有 h h h 个隐藏单元,隐藏层的输出 H H H 是通过输入 X X X 与隐藏层的权重 W h ∈ R d × h W_{h} \in\mathbb{R}^{d \times h} WhRd×h 和偏置 b h ∈ R 1 × h b_{h} \in\mathbb{R}^{1 \times h} bhR1×h 计算得到的: H = X W h + b h H=X W_{h}+b_{h} H=XWh+bh
  输出层的权重为 W o ∈ R h × q W_{o} \in\mathbb{R}^{h \times q} WoRh×q ,偏置为 b o ∈ R 1 × q b_{o} \in\mathbb{R}^{1 \times q} boR1×q 。因此,输出层的输出 O O O 为: O = H W o + b o O=H W_{o}+b_{o} O=HWo+bo
  将隐藏层的输出 H H H 代入到输出层的方程中,得到如下计算过程:
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o O=( X W_{h}+b_{h} ) W_{o}+b_{o}=X W_{h} W_{o}+b_{h} W_{o}+b_{o} O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo
  通过联立后的式子可以看出,尽管引入了隐藏层,模型的计算仍然可以视作单层神经网络,其中,权重矩阵等于 W h W o W_{h} W_{o} WhWo,偏置等于 b h W o + b o b_{h} W_{o}+b_{o} bhWo+bo
  这表示,尽管引入了隐藏层,在不采用非线性激活函数的情况下,这个设计只能等价于单层神经网络。引入隐藏层的真正意义在于通过非线性激活函数(如ReLU、Sigmoid等)来引入复杂的非线性关系,使得模型具备更强的表达能力。

2、激活函数

  激活函数是 MLP的关键组成部分。它们将非线性引入网络,使其能够对复杂问题进行建模。如果没有激活函数,无论有多少层,MLP都相当于单层线性模型。
激活函数需要具备以下几点性质:

  1. 连续并可导(允许少数点上不可导),便于利用数值优化的方法来学习网络参数
  2. 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率
  3. 激活函数的导函数的值域要在合适区间内,不能太大也不能太小,否则会影响训练的效率和稳定性
    以下列举常用的三个激活函数
sigma函数

s i g m a ( z ) = 1 1 + exp ⁡ ( − z ) sigma( z )=\frac{1} {1+\operatorname{e x p} (-z )} sigma(z)=1+exp(z)1
  sigma函数也称为 S \mathrm{S} S 型函数,可以将任何实值数映射到 0 0 0 1 1 1 之间的值。呈S形,具有明确定义的非零导数,这使其适合与反向传播算法一起使用。
在这里插入图片描述
  sigmoid函数的导数表达式为:
s i g m a ′ ( z ) = s i g m a ( z ) × ( 1 − s i g m a ( z ) ) sigma^{\prime} ( z )=sigma( z ) \times( 1-sigma ( z ) ) sigma(z)=sigma(z)×(1sigma(z))
  如下所示:
在这里插入图片描述

tanh函数

tanh ⁡ ( z ) = 1 − exp ⁡ ( − 2 z ) 1 + exp ⁡ ( − 2 z ) \operatorname{t a n h} ( z )=\frac{1-\operatorname{e x p} (-2z )} {1+\operatorname{e x p} (-2z )} tanh(z)=1+exp(2z)1exp(2z)
  双曲正切函数与逻辑函数类似,但输出值在-1和 1 1 1 之间。这种居中效果有助于加快训练期间的收敛速度。
在这里插入图片描述
  tanh导数表达式如下所示:
t a n h ′ ( z ) = 1 − tanh ⁡ 2 ( z ) tanh^{\prime} ( z)=1-\operatorname{t a n h}^{2} ( z ) tanh(z)=1tanh2(z)
  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
在这里插入图片描述

ReLU函数

R e L U ( z ) = max ⁡ ( 0 , z ) \mathrm{R e L U} ( z )=\operatorname* {m a x} ( 0, z ) ReLU(z)=max(0,z)
  ReLU 函数因其简单性和有效性而被广泛应用于深度学习。如果输入值为正,则输出输入值;否则输出零。尽管 ReLU 在零处不可微,并且对于负输入具有零梯度,但它在实践中表现良好,有助于缓解梯度消失问题
在这里插入图片描述
  当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1,
  ReLU 函数的导数表达式为:
R e L U ′ ( z ) = { 1 i f   z > 0 0 i f   z ≤ 0 R e L U^{\prime} ( z )=\begin{cases} {{1}} & {{\mathrm{i f ~} z > 0}} \\ {{0}} & {{\mathrm{i f ~} z \leq0}} \\ \end{cases} ReLU(z)={10if z>0if z0
  下面绘制ReLU函数的导数,
在这里插入图片描述

3、反向传播算法

1、前向传播
  前向传播是反向传播的前提。在前向传播过程中,数据从输入层逐步传递至输出层,经过每一层的计算,最终得到预测输出。
  具体步骤如下:
  1、输入数据传递给神经网络的输入层。
  2、输入层经过一系列权重(W)和偏置(b)的线性运算,然后通过激活函数传递到隐藏层。
  3、逐层传递,直至数据到达输出层,输出层生成预测值 y ^ \hat{y} y^
  表达式如下:
y ^ = f ( W 3 ⋅ f ( W 2 ⋅ f ( W 1 ⋅ x + b 1 ) + b 2 ) + b 3 ) \hat{y}=f ( W_{3} \cdot f ( W_{2} \cdot f ( W_{1} \cdot x+b_{1} )+b_{2} )+b_{3} ) y^=f(W3f(W2f(W1x+b1)+b2)+b3)
  其中, W 1 , W 2 , W 3 W_{1}, W_{2}, W_{3} W1,W2,W3 是权重矩阵, b 1 , b 2 , b 3 b_{1}, b_{2}, b_{3} b1,b2,b3 是偏置, f ( ⋅ ) f ( \cdot) f() 是激活函数。
2、 损失函数
  在得到输出后,通过损失函数计算预测结果与真实标签之间的误差,常见的损失函数有:
  MSE(均方误差):通常用于回归问题,输出与标签之差的平方的均值。计算公式如下:
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE=\frac{1} {n} \sum_{i=1}^{n} ( y_{i}-\hat{y}_{i} )^{2} MSE=n1i=1n(yiy^i)2
  其中, y i y_{i} yi 是真实值, y ^ i \hat{y}_{i} y^i 是预测值, n n n 是样本数量。
  CE(交叉熵损失):通常用于回归问题。计算公式如下:
H ( p , q ) = − ∑ i = 1 n p ( x i ) log ⁡ q ( x i ) H(p,q)=-\sum_{i=1}^{n}p(x_{i}) \operatorname{log}q(x_{i}) H(p,q)=i=1np(xi)logq(xi)
  其中, p ( x i ) p ( x_{i} ) p(xi) 是真实分布, q ( x i ) q ( x_{i} ) q(xi) 是预测分布。
3、反向传播
  反向传播根据微积分中的链式规则,按相反的顺序从输入层遍历网络。用于权重更新,使网络输出更接近标签。
  假设有两个函数 y = f ( u ) y=f ( u ) y=f(u) u = g ( x ) u=g ( x ) u=g(x) ,根据链式法则, y y y x x x 的导数为:
∂ y ∂ x = ∂ y ∂ u ∂ u ∂ x \frac{\partial y} {\partial x}=\frac{\partial y} {\partial u} \frac{\partial u} {\partial x} xy=uyxu
  在神经网络中,损失函数 L L L 对某一层权重 W W W 的导数可以通过链式法则分解为:
∂ L ∂ W = ∂ L ∂ y ⋅ ∂ y ∂ W \frac{\partial L} {\partial W}=\frac{\partial L} {\partial y} \cdot\frac{\partial y} {\partial W} WL=yLWy
4、梯度下降
  在反向传播过程中,利用梯度下降算法来更新权重,使得损失函数的值逐渐减小。权重更新的公式为:
W ( h ) = W ( o ) − η ⋅ ∂ L ∂ W W^{(h )}=W^{( o )}-\eta\cdot\frac{\partial L} {\partial W} W(h)=W(o)ηWL
  其中, η \eta η 是学习率,决定了每次权重调整的步长大小, ∂ L ∂ W \frac{\partial L} {\partial W} WL 是损失函数相对于权重的梯度。

三、算法优缺点

(一)优点

  可以通过多个隐藏层和非线性激活函数,学习到更复杂的特征表示,从而提高模型的表达能力。
  可以用于分类、回归和聚类等各种机器学习任务,目在许多领域中取得了很好的效果。
  可以诵过并行计算和GPU加速等技术,高效地处理大规模数据集,适用于大规模深度学习应用。

(二)缺点

  参数较多,容易在训练集上过拟合,需要采取正则化、dropout等方法来缓解过拟合问题。
  通常需要大量的标记数据进行训练,并且在训练过程中需要较高的计算资源,包括内存和计算
能力。
  MLP的性能很大程度上依赖于超参数的选择。

四、MLP分类任务实现对比

(一)数据加载和样本分区

1、Python代码

from sklearn.datasets import load_iris

# 加载iris数据集
iris = load_iris()
X, y = iris['data'], iris['target']

# 样本分区
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先,利用数据读入中的文本算子对数据进行读取,
在这里插入图片描述
  然后连接样本分区算子划分训练集和测试集,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

  使用sklearn自动构建MLP模型

from sklearn.neural_network import MLPClassifier

# 定义MLP分类器模型,使用l-bfgs优化算法,隐藏层设置为100, 50,最大迭代次数200,设置tol为0.000001
mlp_clf = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=200, alpha=1e-4,
                        solver='lbfgs', tol=1e-6, random_state=42)
# 训练模型
mlp_clf.fit(X_train, y_train)

# 预测训练集和测试集
y_train_pred = mlp_clf.predict(X_train)
y_test_pred = mlp_clf.predict(X_test)

2、Sentosa_DSML社区版

  连接多层感知机分类算子,右击算子,点击运行,可以得到多层感知机分类模型。右侧进行超参数等设置,隐藏层设置为(100, 50),使用l-bfgs优化算法,最大迭代次数200,设置收敛偏差为0.000001。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_recall_fscore_support

# 计算训练集评估指标
accuracy_train = accuracy_score(y_train, y_train_pred)
precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(y_train, y_train_pred, average='weighted')

# 计算测试集评估指标
accuracy_test = accuracy_score(y_test, y_test_pred)
precision_test, recall_test, f1_test, _ = precision_recall_fscore_support(y_test, y_test_pred, average='weighted')

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"Accuracy: {accuracy_train * 100:.2f}%")
print(f"Weighted Precision: {precision_train:.2f}")
print(f"Weighted Recall: {recall_train:.2f}")
print(f"Weighted F1 Score: {f1_train:.2f}")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"Accuracy: {accuracy_test * 100:.2f}%")
print(f"Weighted Precision: {precision_test:.2f}")
print(f"Weighted Recall: {recall_test:.2f}")
print(f"Weighted F1 Score: {f1_test:.2f}")

from sklearn.metrics import confusion_matrix

# 计算测试集的混淆矩阵
conf_matrix = confusion_matrix(y_test, y_test_pred)

import matplotlib.pyplot as plt
from sklearn.inspection import permutation_importance

# 使用 sklearn 提供的permutation_importance方法计算特征重要性
result = permutation_importance(mlp_clf, X_test, y_test, n_repeats=10, random_state=42)

# 可视化特征重要性
plt.figure(figsize=(8, 6))
plt.barh(range(X.shape[1]), result.importances_mean, align='center')
plt.yticks(np.arange(X.shape[1]), iris['feature_names'])
plt.xlabel('Mean Importance Score')
plt.title('Permutation Feature Importance')
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可以连接评估算子,对模型的分类结果进行评估。算子流如下图所示,
在这里插入图片描述
  执行完成后可以得到训练集和测试集的评估,评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息,如下所示:
在这里插入图片描述

五、MLP回归任务实现对比

(一)数据加载和样本分区

1、Python代码

# 读入winequality数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")

# 将数据集划分为特征和标签
X = df.drop("quality", axis=1)  # 特征,假设标签是 "quality"
Y = df["quality"]  # 标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,
在这里插入图片描述
  中间接样本分区算子对训练集和测试集进行划分,
在这里插入图片描述
  然后接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

使用 scikit-learn 库中的多层感知机回归模型(MLPRegressor)

# 对数据进行标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 定义MLP回归模型,使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置tol为0.000001
mlp_reg = MLPRegressor(hidden_layer_sizes=(50, 10), solver='lbfgs', max_iter=300, tol=1e-6, random_state=42)

# 训练模型
mlp_reg.fit(X_train_scaled, y_train)

2、Sentosa_DSML社区版

  连接标准化算子,对数据特征进行标准化计算,并执行得到标准化模型,
在这里插入图片描述
  其次,连接多层感知机回归算子,右击执行得到多层感知机回归模型。模型训练使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置收敛偏差为0.000001,并选择计算特征重要性等。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 训练集上的评估
y_train_pred = mlp_reg.predict(X_train_scaled)

r2_train = r2_score(y_train, y_train_pred)
mae_train = mean_absolute_error(y_train, y_train_pred)
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train)) * 100
smape_train = 100 / len(y_train) * np.sum(2 * np.abs(y_train - y_train_pred) / (np.abs(y_train) + np.abs(y_train_pred)))

# 测试集上的评估
y_test_pred = mlp_reg.predict(X_test_scaled)

r2_test = r2_score(y_test, y_test_pred)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
mape_test = np.mean(np.abs((y_test - y_test_pred) / y_test)) * 100
smape_test = 100 / len(y_test) * np.sum(2 * np.abs(y_test - y_test_pred) / (np.abs(y_test) + np.abs(y_test_pred)))

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"R²: {r2_train:.2f}")
print(f"MAE: {mae_train:.2f}")
print(f"MSE: {mse_train:.2f}")
print(f"RMSE: {rmse_train:.2f}")
print(f"MAPE: {mape_train:.2f}%")
print(f"SMAPE: {smape_train:.2f}%")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"R²: {r2_test:.2f}")
print(f"MAE: {mae_test:.2f}")
print(f"MSE: {mse_test:.2f}")
print(f"RMSE: {rmse_test:.2f}")
print(f"MAPE: {mape_test:.2f}%")
print(f"SMAPE: {smape_test:.2f}%")

# 计算残差
residuals = y_test - y_test_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可接评估算子,对模型的回归结果进行评估。
在这里插入图片描述
  训练集和测试集的评估结果如下所示:
在这里插入图片描述
在这里插入图片描述
  右键查看模型信息,可以得到特征重要性等可视化计算结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  Sentosa数据科学与机器学习平台(Sentosa_DSML)是力维智联完全自主知识产权的一站式人工智能开发部署应用平台,可同时支持零代码“拖拉拽”与notebook交互式开发,旨在通过低代码方式帮助客户实现AI算法模型的开发、评估与部署,结合完善的数据资产化管理模式与开箱即用的简捷部署支持,可赋能企业、城市、高校、科研院所等不同客户群体,实现AI普惠、化繁为简。
  Sentosa_DSML产品由1+3个平台组成,以数据魔方平台(Sentosa_DC)为主管理平台,三大功能平台包括机器学习平台(Sentosa_ML)、深度学习平台(Sentosa_DL)和知识图谱平台(Sentosa_KG)。力维智联凭借本产品入选“全国首批人工智能5A等级企业”,并牵头科技部2030AI项目的重要课题,同时服务于国内多家“双一流”高校及研究院所。
  为了回馈社会,矢志推动全民AI普惠的实现,不遗余力地降低AI实践的门槛,让AI的福祉惠及每一个人,共创智慧未来。为广大师生学者、科研工作者及开发者提供学习、交流及实践机器学习技术,我们推出了一款轻量化安装且完全免费的Sentosa_DSML社区版软件,该软件包含了Sentosa数据科学与机器学习平台(Sentosa_DSML)中机器学习平台(Sentosa_ML)的大部分功能,以轻量化一键安装、永久免费使用、视频教学服务和社区论坛交流为主要特点,同样支持“拖拉拽”开发,旨在通过零代码方式帮助客户解决学习、生产和生活中的实际痛点问题。
  该软件为基于人工智能的数据分析工具,该工具可以进行数理统计与分析、数据处理与清洗、机器学习建模与预测、可视化图表绘制等功能。为各行各业赋能和数字化转型,应用范围非常广泛,例如以下应用领域:
  金融风控:用于信用评分、欺诈检测、风险预警等,降低投资风险;
  股票分析:预测股票价格走势,提供投资决策支持;
  医疗诊断:辅助医生进行疾病诊断,如癌症检测、疾病预测等;
  药物研发:进行分子结构的分析和药物效果预测,帮助加速药物研发过程;
  质量控制:检测产品缺陷,提高产品质量;
  故障预测:预测设备故障,减少停机时间;
  设备维护:通过分析机器的传感器数据,检测设备的异常行为;
  环境保护:用于气象预测、大气污染监测、农作物病虫害防止等;
  客户服务:通过智能分析用户行为数据,实现个性化客户服务,提升用户体验;
  销售分析:基于历史数据分析销量和价格,提供辅助决策;
  能源预测:预测电力、天然气等能源的消耗情况,帮助优化能源分配和使用;
  智能制造:优化生产流程、预测性维护、智能质量控制等手段,提高生产效率。

  欢迎访问Sentosa_DSML社区版的官网https://sentosa.znv.com/,免费下载体验。同时,我们在B站、CSDN、知乎、博客园等平台有技术讨论博客和应用案例分享,欢迎广大数据分析爱好者前往交流讨论。

  Sentosa_DSML社区版,重塑数据分析新纪元,以可视化拖拽方式指尖轻触解锁数据深层价值,让数据挖掘与分析跃升至艺术境界,释放思维潜能,专注洞察未来。
社区版官网下载地址:https://sentosa.znv.com/
社区版官方论坛地址:http://sentosaml.znv.com/
B站地址:https://space.bilibili.com/3546633820179281
CSDN地址:https://blog.csdn.net/qq_45586013?spm=1000.2115.3001.5343
知乎地址:https://www.zhihu.com/people/kennethfeng-che/posts
博客园地址:https://www.cnblogs.com/KennethYuen

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2267572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

R基于贝叶斯加法回归树BART、MCMC的DLNM分布滞后非线性模型分析母婴PM2.5暴露与出生体重数据及GAM模型对比、关键窗口识别

全文链接:https://tecdat.cn/?p38667 摘要:在母婴暴露于空气污染对儿童健康影响的研究中,常需对孕期暴露情况与健康结果进行回归分析。分布滞后非线性模型(DLNM)是一种常用于估计暴露 - 时间 - 响应函数的统计方法&am…

e3 1220lv3 cpu-z分数

e3 1220lv3 双核四线程,1.1G频率,最低可在800MHZ运行,TDP 13W。 使用PE启动后测试cpu-z分数。 现在e3 1220lv3的价格落到69元。

Debian安装配置RocketMQ

安装配置 本次安装在/tools/rocket目录下 下载 wget https://dist.apache.org/repos/dist/release/rocketmq/5.3.1/rocketmq-all-5.3.1-bin-release.zip 解压缩 unzip rocketmq-all-5.3.1-bin-release.zip 如果出现以下报错 -bash: unzip: command not found可安装unzip工具后执…

cocos 运行时,实时查看、修改节点树

简介 cocos论坛提供的一款辅助查看、修改cocos运行时的节点树工具,同时也可以实时修改运行的节点树并进行修改。在此感谢大佬提供这么实用的工具。 参考链接:【运行时显示节点树插件】ccc-devtools悄悄更新 - Creator 2.x - Cocos中文社区 仓库链接&a…

UE(虚幻)学习(四) 第一个C++类来控制小球移动来理解蓝图和脚本如何工作

UE5视频看了不少,但基本都是蓝图如何搞,或者改一下属性,理解UE系统现有组件使用的。一直对C脚本和蓝图之间的关系不是很理解,看到一个视频讲的很好,我也做笔记记录一下。 我的环境是UE5.3.2. 创建UE空项目 我们创建…

记一次内存泄漏分析(待写稿)

背景 线上Flink频繁重启,先后排查了很多情况,目前在内存阶段排查,首先说说学到的知识 内存泄漏分析 JVM常用命令 JConsole JVisualvm 快照的这里是最有用的,它和jmap不同,jmap查找的是占用字节最多的类&#xff…

【蓝桥杯——物联网设计与开发】拓展模块5 - 光敏/热释电模块

目录 一、光敏/热释电模块 (1)资源介绍 🔅原理图 🔅AS312 🌙简介 🌙特性 🔅LDR (2)STM32CubeMX 软件配置 (3)代码编写 (4&#x…

C语言从入门到放弃教程

C语言从入门到放弃 1. 介绍1.1 特点1.2 历史与发展1.3 应用领域 2. 安装2.1 编译器安装2.2 编辑器安装 3. 第一个程序1. 包含头文件2. 主函数定义3. 打印语句4. 返回值 4. 基础语法4.1 注释4.1.1 单行注释4.1.2 多行注释 4.2 关键字4.2.1 C语言标准4.2.2 C89/C90关键字&#xf…

第三百四十六节 JavaFX教程 - JavaFX绑定

JavaFX教程 - JavaFX绑定 JavaFX绑定同步两个值:当因变量更改时,其他变量更改。 要将属性绑定到另一个属性,请调用bind()方法,该方法在一个方向绑定值。例如,当属性A绑定到属性B时,属性B的更改将更新属性A…

慧集通客户案例:致远OA与熵基考勤机集成方案

本原型公司是一家专注大健康产业的综合性高新科技形实体企业,按照单位的战略业务布局,围绕“做强做优、世界一流”的目标,加快内外部资源整合、加强业务协同、优化资源配置,有序推进大健康及相关产业的有机融合,加快构…

SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention

摘要 https://arxiv.org/pdf/2407.05128 通道注意力和空间注意力分别为各种下游视觉任务在提取特征依赖性和空间结构关系方面带来了显著改进。通道注意力和空间注意力的结合使用被广泛认为有利于进一步提升性能;然而,通道注意力和空间注意力之间的协同作…

UE5在蓝图中使用VarestX插件访问API

在Fab中安装好VarestX免费插件 这个插件可以用来远程请求http和api等,返回json等格式内容 插件网址 https://www.fab.com/zh-cn/listings/d283e40c-4ee5-4e73-8110-cc7253cbeaab 虚幻里开启插件 然后网上随便搜个免费api测试一下,这里我找了个微博热搜…

碰一碰发视频矩阵系统源码搭建,支持OEM

一、引言 随着短视频的火爆发展,碰一碰发视频的矩阵系统逐渐受到关注。这种系统能够实现用户通过碰一碰设备(如 NFC 标签)快速触发视频的发布,在营销推广、互动体验等领域有着广泛的应用前景。本文将详细介绍碰一碰发视频矩阵系统…

Pandas01

文章目录 内容简介1 常用数据分析三方库2 Jupyter notebook3 Series的创建3.1 通过Numpy的Ndarray 创建一个Series3.2 通过列表创建Series 4 Series的属性和方法4.1 常用属性4.2 常用方法4.3 布尔值列表筛选部分数据4.4 Series 的运算 5 DataFrame的创建通过字典创建通过列表[元…

WebPack3项目升级webpack5的配置调试记录

文章目录 前言一、webpack3环境1.1、知识点记录1.1.1、配置解释1.1.2、webpack与sass版本对应关系1.1.3、CommonJS与ESModule1.1.4、node版本管理nvm1.1.5、sass-loader、sass与node-sass 1.2、其他1.2.1、.d.ts是什么文件1.2.2、react与types/react版本对应关系1.2.3、webpack…

plsql :用户system通过sysdba连接数据库--报错ora-01031

一、winR cmd通过命令窗口登录sys用户 sql sys/[password]//localhost:1521/[service_name] as sysdba二、输入用户名:sys as sysdba 三、输入密码:自己设的 四、执行grant sysdba to system; 再去PL/SQL连接就可以了

Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight 论文阅读

文章信息: 原文链接:https://arxiv.org/abs/2412.18298 Abstract 视频异常检测(VAD)通过整合大语言模型(LLMs)和视觉语言模型(VLMs)取得了显著进展,解决了动态开放世界…

药片缺陷检测数据集,8625张图片,使用YOLO,PASICAL VOC XML,COCO JSON格式标注,可识别药品是否有缺陷,是否完整

药片缺陷检测数据集,8625张图片,使用YOLO,PASICAL VOC XML,COCO JSON格式标注,可识别药品是否有缺陷,是否完整 有缺陷的标注信息: 无缺陷的标注信息 数据集下载: yolov11:https://d…

蓝桥杯速成教程{三}(adc,i2c,uart)

目录 一、adc 原理图​编辑引脚配置 Adc通道使能配置 实例测试 ​编辑效果显示 案例程序 badc 按键相关函数 测量频率占空比 main 按键的过程 显示界面的过程 二、IIC通信-eeprom 原理图AT24C02 引脚配置 不可用状态,用的软件IIC 官方库移植 At24c02手册 ​编辑…

第6章 图论

2024年12月25日一稿 🐰6.1 图的基本概念 6.1.1 图的定义和表示 6.1.2 图的同构 6.1.3 完全图与正则图 6.1.4 子图与补图 6.1.5 通路与回路 6.2 图的连通性 6.2.1 无向图的连通性 6.2.2 有向图的连通性 6.3 图的矩阵表示 6.3.1 关联矩阵 6.3.2 有向图的邻接矩阵…