IIC驱动EEPROM

news2024/12/25 12:00:54

代码参考正点原子

i2c_dri:主要是三段式状态机的编写

module iic_dri
    #(
      parameter   SLAVE_ADDR = 7'b1010000   ,  //EEPROM从机地址
      parameter   CLK_FREQ   = 26'd50_000_000, //模块输入的时钟频率
      parameter   I2C_FREQ   = 18'd250_000     //IIC_SCL的时钟频率
    )
   (                                                            
    input                clk        ,    
    input                rst_n      ,   
                                             
    //i2c interface                      
    input                i2c_exec   ,  //I2C触发执行信号
    input                bit_ctrl   ,  //字地址位控制(16b/8b),1代表字地址是16位的,0是8位的
    input                i2c_rh_wl  ,  //I2C读写控制信号     ,1代表读数据,0代表写数据
    input        [15:0]  i2c_addr   ,  //I2C器件内地址
    input        [ 7:0]  i2c_data_w ,  //I2C要写的数据
    output  reg  [ 7:0]  i2c_data_r ,  //I2C读出的数据
    output  reg          i2c_done   ,  //I2C一次操作完成
    output  reg          i2c_ack    ,  //I2C应答标志 0:应答 1:未应答
    output  reg          scl        ,  //I2C的SCL时钟信号
    inout                sda        ,  //I2C的SDA信号
                                       
    //user interface                   
    output  reg          dri_clk       //驱动I2C操作的驱动时钟
     );

//localparam define
localparam  st_idle     = 8'b0000_0001; //空闲状态
localparam  st_sladdr   = 8'b0000_0010; //发送器件地址(slave address)
localparam  st_addr16   = 8'b0000_0100; //发送16位字地址
localparam  st_addr8    = 8'b0000_1000; //发送8位字地址
localparam  st_data_wr  = 8'b0001_0000; //写数据(8 bit)
localparam  st_addr_rd  = 8'b0010_0000; //发送器件地址读
localparam  st_data_rd  = 8'b0100_0000; //读数据(8 bit)
localparam  st_stop     = 8'b1000_0000; //结束I2C操作

//reg define
reg            sda_dir   ; //I2C数据(SDA)方向控制
reg            sda_out   ; //SDA输出信号
reg            st_done   ; //状态结束
reg            wr_flag   ; //写标志
reg    [ 6:0]  cnt       ; //计数
reg    [ 7:0]  cur_state ; //状态机当前状态
reg    [ 7:0]  next_state; //状态机下一状态
reg    [15:0]  addr_t    ; //地址
reg    [ 7:0]  data_r    ; //读取的数据
reg    [ 7:0]  data_wr_t ; //I2C需写的数据的临时寄存
reg    [ 9:0]  clk_cnt   ; //分频时钟计数

//wire define
wire          sda_in     ; //SDA输入信号
wire   [8:0]  clk_divide ; //模块驱动时钟的分频系数

//*****************************************************
//**                    main code
//*****************************************************

//SDA控制
assign  sda     = sda_dir ?  sda_out : 1'bz;     //SDA数据输出或高阻
assign  sda_in  = sda ;                          //SDA数据输入
assign  clk_divide = (CLK_FREQ/I2C_FREQ) >> 2'd2;//模块驱动时钟的分频系数

//生成I2C的SCL的四倍频率的驱动时钟用于驱动i2c的操作
always @(posedge clk or negedge rst_n) begin
    if(!rst_n) begin
        dri_clk <=  1'b0;
        clk_cnt <= 10'd0;
    end
    else if(clk_cnt == clk_divide[8:1] - 1'd1) begin
        clk_cnt <= 10'd0;
        dri_clk <= ~dri_clk;
    end
    else
        clk_cnt <= clk_cnt + 1'b1;
end

//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) begin
    if(!rst_n)
        cur_state <= st_idle;
    else
        cur_state <= next_state;
end

//组合逻辑判断状态转移条件
always @(*) begin
    next_state = st_idle;    //清除锁存器
    case(cur_state)
        st_idle: begin                          //空闲状态
           if(i2c_exec) begin
               next_state = st_sladdr;  //器件地址
           end
           else
               next_state = st_idle;
        end
        
        st_sladdr: begin
            if(st_done) begin
                if(bit_ctrl)                    //判断是16位还是8位字地址
                   next_state = st_addr16;      //字地址的高8位
                else
                   next_state = st_addr8 ;      //字地址的低8位
            end
            else
                next_state = st_sladdr;
        end
        st_addr16: begin                        //写16位字地址
            if(st_done) begin
                next_state = st_addr8;
            end
            else begin
                next_state = st_addr16;
            end
        end
        st_addr8: begin                         //8位字地址
            if(st_done) begin
                if(wr_flag==1'b0)               //读写判断
                    next_state = st_data_wr;
                else
                    next_state = st_addr_rd;
            end
            else begin
                next_state = st_addr8;
            end
        end
        
        st_data_wr: begin                       //写数据(8 bit)
            if(st_done)
                next_state = st_stop;
            else
                next_state = st_data_wr;
        end
        st_addr_rd: begin                       //写地址以进行读数据
            if(st_done) begin
                next_state = st_data_rd;
            end
            else begin
                next_state = st_addr_rd;
            end
        end
        st_data_rd: begin                       //读取数据(8 bit)
            if(st_done)
                next_state = st_stop;
            else
                next_state = st_data_rd;
        end
        st_stop: begin                          //结束I2C操作
            if(st_done)
                next_state = st_idle;
            else
                next_state = st_stop ;
        end
        default: next_state= st_idle;
    endcase
end

//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) begin
    //复位初始化
    if(!rst_n) begin
        scl       <= 1'b1;
        sda_out   <= 1'b1;
        sda_dir   <= 1'b1;                          
        i2c_done  <= 1'b0;                          
        i2c_ack   <= 1'b0;                          
        cnt       <= 1'b0;                          
        st_done   <= 1'b0;                          
        data_r    <= 1'b0;                          
        i2c_data_r<= 1'b0;                          
        wr_flag   <= 1'b0;                          
        addr_t    <= 1'b0;                           
        data_wr_t <= 1'b0;                          
    end                                              
    else begin                                       
        st_done <= 1'b0 ;                            
        cnt     <= cnt +1'b1 ;                       
        case(cur_state)                              
             st_idle: begin                          //空闲状态
                scl     <= 1'b1;                     
                sda_out <= 1'b1;                     //当sda_dir为1时,sda_out就是sda  
                sda_dir <= 1'b1;                     
                i2c_done<= 1'b0;                     
                cnt     <= 7'b0;               
                if(i2c_exec) begin                   
                    wr_flag   <= i2c_rh_wl ;         
                    addr_t    <= i2c_addr  ;         
                    data_wr_t <= i2c_data_w;  
                    i2c_ack <= 1'b0;                      
                end                                  
            end                                      
            st_sladdr: begin                         //写地址(器件地址和字地址)
                case(cnt)                            
                    7'd1 : sda_out <= 1'b0;          //开始I2C    起始信号 
                    7'd3 : scl <= 1'b0;              //scl在3、5、7、9...时0 1 0 1变化,四分频
                    7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= SLAVE_ADDR[5]; 
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= SLAVE_ADDR[4]; 
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= SLAVE_ADDR[3]; 
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= SLAVE_ADDR[2]; 
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= SLAVE_ADDR[1]; 
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= SLAVE_ADDR[0]; 
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: sda_out <= 1'b0;          //0:写  表示接着写 
                    7'd33: scl <= 1'b1;              
                    7'd35: scl <= 1'b0;              
                    7'd36: begin                     
                        sda_dir <= 1'b0;       //拉低释放总线       
                        sda_out <= 1'b1;                         
                    end                              
                    7'd37: scl     <= 1'b1;            
                    7'd38: begin                     //从机应答 
                        st_done <= 1'b1;
                        if(sda_in == 1'b1)           //高电平表示未应答  0表示有效应答
                            i2c_ack <= 1'b1;         //拉高应答标志位     
                    end                                          
                    7'd39: begin                     
                        scl <= 1'b0;                 
                        cnt <= 1'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_addr16: begin                         
                case(cnt)                            
                    7'd0 : begin                     
                        sda_dir <= 1'b1 ;            
                        sda_out <= addr_t[15];       //传送字地址i2c_addr
                    end                              
                    7'd1 : scl <= 1'b1;              //四分频          
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= addr_t[14];    
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= addr_t[13];    
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= addr_t[12];    
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= addr_t[11];    
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= addr_t[10];    
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= addr_t[9];     
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= addr_t[8];     
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;             
                        sda_out <= 1'b1;   
                    end                              
                    7'd33: scl  <= 1'b1;             
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end        
                    7'd35: begin                     
                        scl <= 1'b0;                 
                        cnt <= 1'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_addr8: begin                          
                case(cnt)                            
                    7'd0: begin                      
                       sda_dir <= 1'b1 ;             
                       sda_out <= addr_t[7];         //字地址
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= addr_t[6];   //  
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= addr_t[5];     
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= addr_t[4];     
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= addr_t[3];     
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= addr_t[2];     
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= addr_t[1];     
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= addr_t[0];     
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;         
                        sda_out <= 1'b1;                    
                    end                              
                    7'd33: scl     <= 1'b1;          
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end   
                    7'd35: begin                     
                        scl <= 1'b0;                 
                        cnt <= 1'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_data_wr: begin                        //写数据(8 bit)
                case(cnt)                            
                    7'd0: begin                      
                        sda_out <= data_wr_t[7];     //I2C写8位数据     data_wr_t要写的数据
                        sda_dir <= 1'b1;             
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= data_wr_t[6];  
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= data_wr_t[5];  
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= data_wr_t[4];  
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= data_wr_t[3];  
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= data_wr_t[2];  
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= data_wr_t[1];  
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= data_wr_t[0];  
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;           
                        sda_out <= 1'b1;                              
                    end                              
                    7'd33: scl <= 1'b1;              
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end          
                    7'd35: begin                     
                        scl  <= 1'b0;                
                        cnt  <= 1'b0;                
                    end                              
                    default  :  ;                    
                endcase                              
            end                                      
            st_addr_rd: begin                        //写地址以进行读数据
                case(cnt)                            
                    7'd0 : begin                     
                        sda_dir <= 1'b1;             
                        sda_out <= 1'b1;             
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd2 : sda_out <= 1'b0;          //重新开始
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= SLAVE_ADDR[5]; 
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= SLAVE_ADDR[4]; 
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= SLAVE_ADDR[3]; 
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= SLAVE_ADDR[2]; 
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= SLAVE_ADDR[1]; 
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= SLAVE_ADDR[0]; 
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: sda_out <= 1'b1;          //1:读
                    7'd33: scl <= 1'b1;              
                    7'd35: scl <= 1'b0;              
                    7'd36: begin                     
                        sda_dir <= 1'b0;            
                        sda_out <= 1'b1;                    
                    end
                    7'd37: scl     <= 1'b1;
                    7'd38: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end   
                    7'd39: begin
                        scl <= 1'b0;
                        cnt <= 1'b0;
                    end
                    default : ;
                endcase
            end
            st_data_rd: begin                        //读取数据(8 bit)
                case(cnt)
                    7'd0: sda_dir <= 1'b0;
                    7'd1: begin
                        data_r[7] <= sda_in;
                        scl       <= 1'b1;
                    end
                    7'd3: scl  <= 1'b0;
                    7'd5: begin
                        data_r[6] <= sda_in ;
                        scl       <= 1'b1   ;
                    end
                    7'd7: scl  <= 1'b0;
                    7'd9: begin
                        data_r[5] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd11: scl  <= 1'b0;
                    7'd13: begin
                        data_r[4] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd15: scl  <= 1'b0;
                    7'd17: begin
                        data_r[3] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd19: scl  <= 1'b0;
                    7'd21: begin
                        data_r[2] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd23: scl  <= 1'b0;
                    7'd25: begin
                        data_r[1] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd27: scl  <= 1'b0;
                    7'd29: begin
                        data_r[0] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd31: scl  <= 1'b0;
                    7'd32: begin
                        sda_dir <= 1'b1;             
                        sda_out <= 1'b1;
                    end
                    7'd33: scl     <= 1'b1;
                    7'd34: st_done <= 1'b1;          //非应答
                    7'd35: begin
                        scl <= 1'b0;
                        cnt <= 1'b0;
                        i2c_data_r <= data_r;
                    end
                    default  :  ;
                endcase
            end
            st_stop: begin                           //结束I2C操作
                case(cnt)
                    7'd0: begin
                        sda_dir <= 1'b1;             //结束I2C
                        sda_out <= 1'b0;
                    end
                    7'd1 : scl     <= 1'b1;
                    7'd3 : sda_out <= 1'b1;
                    7'd15: st_done <= 1'b1;
                    7'd16: begin
                        cnt      <= 1'b0;
                        i2c_done <= 1'b1;            //向上层模块传递I2C结束信号
                    end
                    default  : ;
                endcase
            end
        endcase
    end
end

EEPROM读写测试模块:

module e2prom_rw(
    input              clk ,
    input              rst_n ,
 
    output reg        i2c_rh_wl,
    output reg        i2c_exec,
    output reg [15:0] i2c_addr, //i2c器件内地址
    output reg [7:0]  i2c_data_w,
    
    input       [7:0]  i2c_data_r,
    input              i2c_done,
    input              i2c_ack,
    
    output reg         rw_done, //E2PROM读写测试完成 
    output reg         rw_result  //E2PROM读写测试结果  0:失败   1:成功             
    
    );
    
    //parameter define
    //EEPROM写数据需要添加间隔时间,读数据则不需要
    parameter   WR_WAIT_TIME = 14'd50000;  //5ms写入数据的间隔时间为5ms
    parameter   MAX_BYTE     = 16'd256;    //读写测试的字节个数
    
    //reg define
    reg [1:0] flow_cnt;  //状态流控制
    reg [13:0] wait_cnt;  //延时计数器
    
    //EEPROM读写测试,先写后读,并比较读出的值与输入的值是否一致
    always @(posedge clk or negedge rst_n)begin
        if(!rst_n) begin 
            flow_cnt   <= 2'b0;
            i2c_rh_wl  <= 1'b0;
            i2c_exec   <= 1'b0;
            i2c_addr   <= 16'b0;
            i2c_data_w <= 8'b0;
            wait_cnt   <= 14'b0;
            rw_done    <= 1'b0;
            rw_result  <= 1'b0;
         end
         else begin 
         i2c_exec <= 1'b0;
         rw_done  <= 1'b0;
         case(flow_cnt)
            2'd0 : begin
                wait_cnt <= wait_cnt + 1'b1;
                if(wait_cnt == (WR_WAIT_TIME  - 1'b1))begin
                    wait_cnt <= 14'b0;
                    if(i2c_addr == MAX_BYTE)begin
                        i2c_addr <= 16'b0;
                        i2c_rh_wl <= 1'b1;
                        flow_cnt  <= 2'd2;
                    end
                    else begin
                        flow_cnt <= flow_cnt + 2'b1;
                        i2c_exec <= 1'b1;  //启动i2c
                    end
                    end
            end
            2'd1 : begin
                if(i2c_done == 1'b1)begin
                    flow_cnt <= 2'd0;
                    i2c_addr <= i2c_addr + 16'b1;       //0-255
                    i2c_data_w <= i2c_data_w + 8'b1;    //0-255
                end
            end
            2'd2 : begin
                flow_cnt <= flow_cnt + 2'b1;
                i2c_exec <= 1'b1;
            end
            2'd3 : begin
                if(i2c_done == 1'b1)begin
                    //读出的值错误或者i2c未应答,读写测试失败
                    if((i2c_addr[7:0] != i2c_data_r) || (i2c_ack == 1'b1)) begin
                        rw_done <= 1'b1;
                        rw_result <=1'b0;
                    end
                    else if(i2c_addr == (MAX_BYTE - 16'b1))begin  //读写测试成功
                        rw_done <= 1'b1;
                        rw_result <=1'b1;
                    end
                    else begin
                        flow_cnt <= 2'd2;
                        i2c_addr <= i2c_addr + 16'b1;
                    end
               end
           end
           default : ;
         endcase
      end

 读写结果判定:

reg          rw_done_flag;    //读写测试完成标志
reg  [16:0]  led_cnt     ;    //led计数

//*****************************************************
//**                    main code
//*****************************************************

//读写测试完成标志rw_done_flag
always @(posedge clk or negedge rst_n) begin
    if(!rst_n)
        rw_done_flag <= 1'b0;
    else if(rw_done)
        rw_done_flag <= 1'b1;
end        

//错误标志为1时PL_LED0闪烁,否则PL_LED0常亮
always @(posedge clk or negedge rst_n) begin
    if(!rst_n) begin
        led_cnt <= 17'd0;
        led <= 1'b0;
    end
    else begin
        if(rw_done_flag) begin
            if(rw_result)                          //读写测试正确
                led <= 1'b1;                       //led灯常亮
            else begin                             //读写测试错误
                led_cnt <= led_cnt + 17'd1;
                if(led_cnt == (L_TIME - 17'b1)) begin
                    led_cnt <= 17'd0;
                    led <= ~led;                   //led灯闪烁
                end
                else
                    led <= led;
            end
        end
        else
            led <= 1'b0;                           //读写测试完成之前,led灯熄灭
    end    
end

endmodule

 top:

module top_e2prom(
    input               sys_clk    ,      //系统时钟
    input               sys_rst_n  ,      //系统复位
    //eeprom interface
    output              iic_scl    ,      //eeprom的时钟线scl
    inout               iic_sda    ,      //eeprom的数据线sda
    //user interface
    output              led               //led显示eeprom读写测试结果
);

//parameter define
parameter    SLAVE_ADDR = 7'b1010000     ; //器件地址(SLAVE_ADDR)
parameter    BIT_CTRL   = 1'b1           ; //字地址位控制参数(16b/8b)
parameter    CLK_FREQ   = 26'd50_000_000 ; //i2c_dri模块的驱动时钟频率(CLK_FREQ)
parameter    I2C_FREQ   = 18'd250_000    ; //I2C的SCL时钟频率
parameter    L_TIME     = 17'd125_000    ; //led闪烁时间参数
parameter    MAX_BYTE   = 16'd256        ; //读写测试的字节个数

//wire define
wire           dri_clk   ; //I2C操作时钟
wire           i2c_exec  ; //I2C触发控制
wire   [15:0]  i2c_addr  ; //I2C操作地址
wire   [ 7:0]  i2c_data_w; //I2C写入的数据
wire           i2c_done  ; //I2C操作结束标志
wire           i2c_ack   ; //I2C应答标志 0:应答 1:未应答
wire           i2c_rh_wl ; //I2C读写控制
wire   [ 7:0]  i2c_data_r; //I2C读出的数据
wire           rw_done   ; //E2PROM读写测试完成
wire           rw_result ; //E2PROM读写测试结果 0:失败 1:成功 

//*****************************************************
//**                    main code
//*****************************************************

//e2prom读写测试模块
e2prom_rw #(
    .MAX_BYTE    (MAX_BYTE  )   //读写测试的字节个数
) u_e2prom_rw(
    .clk         (dri_clk   ),  //时钟信号
    .rst_n       (sys_rst_n ),  //复位信号
    //i2c interface
    .i2c_exec    (i2c_exec  ),  //I2C触发执行信号
    .i2c_rh_wl   (i2c_rh_wl ),  //I2C读写控制信号
    .i2c_addr    (i2c_addr  ),  //I2C器件内地址
    .i2c_data_w  (i2c_data_w),  //I2C要写的数据
    .i2c_data_r  (i2c_data_r),  //I2C读出的数据
    .i2c_done    (i2c_done  ),  //I2C一次操作完成
    .i2c_ack     (i2c_ack   ),  //I2C应答标志 
    //user interface
    .rw_done     (rw_done   ),  //E2PROM读写测试完成
    .rw_result   (rw_result )   //E2PROM读写测试结果 0:失败 1:成功
);

//i2c驱动模块
iic_dri #(
    .SLAVE_ADDR  (SLAVE_ADDR),  //EEPROM从机地址
    .CLK_FREQ    (CLK_FREQ  ),  //模块输入的时钟频率
    .I2C_FREQ    (I2C_FREQ  )   //IIC_SCL的时钟频率
) u_i2c_dri(
    .clk         (sys_clk   ),  
    .rst_n       (sys_rst_n ),  
    //i2c interface
    .i2c_exec    (i2c_exec  ),  //I2C触发执行信号
    .bit_ctrl    (BIT_CTRL  ),  //器件地址位控制(16b/8b)
    .i2c_rh_wl   (i2c_rh_wl ),  //I2C读写控制信号
    .i2c_addr    (i2c_addr  ),  //I2C器件内地址
    .i2c_data_w  (i2c_data_w),  //I2C要写的数据
    .i2c_data_r  (i2c_data_r),  //I2C读出的数据
    .i2c_done    (i2c_done  ),  //I2C一次操作完成
    .i2c_ack     (i2c_ack   ),  //I2C应答标志
    .scl         (iic_scl   ),  //I2C的SCL时钟信号
    .sda         (iic_sda   ),  //I2C的SDA信号
    //user interface
    .dri_clk     (dri_clk   )   //I2C操作时钟
);

//led指示模块
rw_result_led #(.L_TIME(L_TIME  )   //控制led闪烁时间
) u_rw_result_led(
    .clk         (dri_clk   ),  
    .rst_n       (sys_rst_n ), 
    
    .rw_done     (rw_done   ),  
    .rw_result   (rw_result ),
    .led         (led       )    
);

endmodule

tb:时钟激励

`timescale  1ns/1ns                     //定义仿真时间单位1ns和仿真时间精度为1ns

module  tb_e2prom_top;              

//parameter  define
parameter  T = 20                          ; //时钟周期为20ns
parameter  SLAVE_ADDR     = 7'b1010000     ; //器件地址(SLAVE_ADDR)
parameter  BIT_CTRL       = 1'b1           ; //字地址位控制参数(16b/8b)
parameter  CLK_FREQ       = 26'd50_000_000 ; //i2c_dri模块的驱动时钟频率(CLK_FREQ),周期就是20纳秒
parameter  I2C_FREQ       = 18'd250_000    ; //I2C的SCL时钟频率,周期是4us
parameter  L_TIME         = 17'd1          ; //led闪烁时间参数
parameter  MAX_BYTE       = 16'd3          ; //读写测试的字节个数

//reg define
reg          sys_clk  ;                 //时钟信号
reg          sys_rst_n;                 //复位信号

//wire define
wire         iic_scl;
wire         iic_sda;
wire         led    ;

//*****************************************************
//**                    main code
//*****************************************************

//给输入信号初始值
initial begin
    sys_clk            = 1'b0;
    sys_rst_n          = 1'b0;     //复位
    #(T+1)  sys_rst_n  = 1'b1;     //在第21ns的时候复位信号信号拉高
end

//50Mhz的时钟,周期则为1/50Mhz=20ns,所以每10ns,电平取反一次
always #(T/2) sys_clk = ~sys_clk;

//将SDA数据线上拉
pullup(iic_sda);

//例化e2prom_top模块
top_e2prom  #(
    .MAX_BYTE   (MAX_BYTE )   //读写测试的字节个数
) u_top_e2prom(
    .sys_clk    (sys_clk  ),  //系统时钟
    .sys_rst_n  (sys_rst_n),  //系统复位
    //eeprom interface
    .iic_scl    (iic_scl  ),  //eeprom的时钟线scl
    .iic_sda    (iic_sda  ),  //eeprom的数据线sda
    //user interface
    .led        (led      )   //led显示
);

//例化e2prom仿真模型
EEPROM_AT24C64 u_EEPROM_AT24C64(
    .scl         (iic_scl),
    .sda         (iic_sda)
    );

endmodule

 上拉电阻:

wire abc;
pullup(abc);
assign abc = enable ? 1’b0 : 1’bz;

enable为1的时候 abc信号为0
enable 为0的时候 assign语句的输出为高阻,但是因为pullup了abc,所以abc的值为1

EEPROM仿真模型:

`timescale 1ns/1ns
`define timeslice 1250
module EEPROM_AT24C64(
scl,
sda
);
input scl; 
inout sda; 
reg out_flag; 
reg[7:0] memory[8191:0]; 
reg[12:0]address; 
reg[7:0]memory_buf; 
reg[7:0]sda_buf; 
reg[7:0]shift; 
reg[7:0]addr_byte_h; 
reg[7:0]addr_byte_l; 
reg[7:0]ctrl_byte; 
reg[1:0]State;
integer i;
//---------------------------
parameter
r7 = 8'b1010_1111, w7 = 8'b1010_1110, //main7
r6 = 8'b1010_1101, w6 = 8'b1010_1100, //main6
r5 = 8'b1010_1011, w5 = 8'b1010_1010, //main5
r4 = 8'b1010_1001, w4 = 8'b1010_1000, //main4
r3 = 8'b1010_0111, w3 = 8'b1010_0110, //main3
r2 = 8'b1010_0101, w2 = 8'b1010_0100, //main2
r1 = 8'b1010_0011, w1 = 8'b1010_0010, //main1
r0 = 8'b1010_0001, w0 = 8'b1010_0000; //main0
assign sda = (out_flag == 1) ? sda_buf[7] : 1'bz;

initial
begin
addr_byte_h = 0;
addr_byte_l = 0;
ctrl_byte = 0;
out_flag = 0;
sda_buf = 0;
State = 2'b00;
memory_buf = 0;
address = 0;
shift = 0;
for(i=0;i<=8191;i=i+1)
memory[i] = 0;
end
always@(negedge sda)
begin
if(scl == 1)
begin
State = State + 1;
if(State == 2'b11)
disable write_to_eeprom;
end
end

always@(posedge sda)
begin
if(scl == 1) 
stop_W_R;
else
begin
casex(State)
2'b01:begin
read_in;
if(ctrl_byte == w7 || ctrl_byte == w6
|| ctrl_byte == w5 || ctrl_byte == w4
|| ctrl_byte == w3 || ctrl_byte == w2
|| ctrl_byte == w1 || ctrl_byte == w0)
begin
State = 2'b10;
write_to_eeprom; 
end
else
State = 2'b00;
end
2'b11:
read_from_eeprom;
default:
State = 2'b00;
endcase
end
end 
task stop_W_R;
begin
State = 2'b00;
addr_byte_h = 0;
addr_byte_l = 0;
ctrl_byte = 0;
out_flag = 0;
sda_buf = 0;
end
endtask

task read_in;
begin
shift_in(ctrl_byte);
shift_in(addr_byte_h);
shift_in(addr_byte_l);
end
endtask

task write_to_eeprom;
begin
shift_in(memory_buf);
address = {addr_byte_h[4:0], addr_byte_l};
memory[address] = memory_buf;
State = 2'b00;
end
endtask

task read_from_eeprom;
begin
shift_in(ctrl_byte);
if(ctrl_byte == r7 || ctrl_byte == w6
|| ctrl_byte == r5 || ctrl_byte == r4
|| ctrl_byte == r3 || ctrl_byte == r2
|| ctrl_byte == r1 || ctrl_byte == r0)
begin
address = {addr_byte_h[4:0], addr_byte_l};
sda_buf = memory[address];
shift_out;
State = 2'b00;
end
end
endtask
task shift_in;
output[7:0]shift;
begin
@(posedge scl) shift[7] = sda;
@(posedge scl) shift[6] = sda;
@(posedge scl) shift[5] = sda;
@(posedge scl) shift[4] = sda;
@(posedge scl) shift[3] = sda;
@(posedge scl) shift[2] = sda;
@(posedge scl) shift[1] = sda;
@(posedge scl) shift[0] = sda;
@(negedge scl)
begin
#(`timeslice);
out_flag = 1;
sda_buf = 0;
end
@(negedge scl)
begin
#(`timeslice-250);
out_flag = 0;
end
end
endtask
task shift_out;
begin
out_flag = 1;
for(i=6; i>=0; i=i-1)
begin
@(negedge scl);
#`timeslice;
sda_buf = sda_buf << 1;
end
@(negedge scl) #`timeslice sda_buf[7] = 1;
@(negedge scl) #`timeslice out_flag = 0;
end
endtask
endmodule

i2c状态机的编写:

 

读数据: 

i2c第一次写入地址0的字节数据0:

 i2c第二次写入地址1的字节数据1: 

 i2c第三次写入地址2的字节数据2: 

读数据的时候sda总线由输入变为输出状态,需要给从机一个非应答信号,不能给应答信号!给应答信号就不再是任意地址读,就变成了从某个地址连续读,不符合本次设计的任意地址读模式:

 

 

两个毛刺信号:(由EEPROM仿真模型引起的)

上板验证:

        胡萝卜鸡... 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2265274.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【动手学轨迹预测】2.3 场景表征方法

场景表征是指在所有可用的场景信息数据中, 提取出对于预测网络有用的数据, 并将其转换为易于模型学习的数据格式. 对于预测网络来说, 最重要的数据是交通参与者的历史轨迹和地图信息, 表达它们的常见方法有:栅格化和稀疏化 2.1.1 栅格化 多通道表达 如上图所示, 将历史轨迹和…

亚信安全举办“判大势 悟思想 强实践”主题党日活动

为深入学习和贯彻党的二十届三中全会精神&#xff0c;近日&#xff0c;亚信安全举办了 “学习贯彻党的二十届三中全会精神——‘判大势 悟思想 强实践’党日活动”&#xff0c;并取得圆满成功。 本次活动特邀南京市委宣讲团成员、南京市委党校市情研究中心主任王辉龙教授出席。…

医疗大模型威胁攻击下的医院AI安全:挑战与应对策略

一、引言 1.1 研究背景与意义 随着人工智能技术的迅猛发展,医疗大模型作为一种新兴的技术手段,正逐渐渗透到医疗领域的各个环节,为医疗服务的数字化转型带来了前所未有的机遇。从辅助诊断到疾病预测,从个性化治疗方案的制定到医疗资源的优化配置,医疗大模型展现出了巨大…

如何在谷歌浏览器中使用内置翻译功能

谷歌浏览器作为全球最受欢迎的网络浏览器之一&#xff0c;提供了强大且便捷的内置翻译功能。这一功能帮助用户轻松跨越语言障碍&#xff0c;浏览不同语言的网页内容。本文将详细介绍如何在谷歌浏览器中使用其内置翻译功能。 一、启用谷歌浏览器内置翻译功能 1、打开谷歌浏览器…

【MySQL】7.0 入门学习(七)——MySQL基本指令:帮助、清除输入、查询等

1.0 help &#xff1f; 帮助指令&#xff0c;查询某个指令的解释、用法、说明等。详情参考博文&#xff1a; 【数据库】6.0 MySQL入门学习&#xff08;六&#xff09;——MySQL启动与停止、官方手册、文档查询 https://www.cnblogs.com/xiaofu007/p/10301005.html 2.0 在cmd命…

基于推理的目标检测 DetGPT

基于推理的目标检测 DetGPT flyfish detgpt.github.io 近年来&#xff0c;由于大型语言模型&#xff08;LLMs&#xff09;的发展&#xff0c;计算机视觉领域取得了重大进展。这些模型使人类与机器之间能够进行更有效、更复杂的交互&#xff0c;为模糊人类与机器智能界限的新技…

概率论 期末 笔记

第一章 随机事件及其概率 利用“四大公式”求事件概率 全概率公式与贝叶斯公式 伯努利概型求概率 习题 推导 一维随机变量及其分布 离散型随机变量&#xff08;R.V&#xff09;求分布律 利用常见离散型分布求概率 连续型R.V相关计算 利用常见连续型分布的计算 均匀分布 正态…

探索 Python编程 调试案例:计算小程序中修复偶数的bug

在 学习Python 编程的过程里&#xff0c;会遇到各种各样的bug。而修复bug调试代码就像是一场充满挑战的侦探游戏。每一个隐藏的 bug 都是谜题&#xff0c;等待开发者去揭开真相&#xff0c;让程序可以顺利运行。今天&#xff0c;让我们通过一个实际案例&#xff0c;深入探索 Py…

Redis 介绍和安装

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 Redis 入门介绍 收录于专栏[redis] 本专栏旨在分享学习Linux的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 本章将带领读者进入 Redis 的世…

springboot480基于springboot高校就业招聘系统设计和实现(论文+源码)_kaic

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自古…

【基础篇】1. JasperSoft Studio编辑器与报表属性介绍

编辑器介绍 Jaspersoft Studio有一个多选项卡编辑器&#xff0c;其中包括三个标签&#xff1a;设计&#xff0c;源代码和预览。 Design&#xff1a;报表设计页面&#xff0c;可以图形化拖拉组件设计报表&#xff0c;打开报表文件的主页面Source&#xff1a;源代码页码&#xff…

【河南新标】豫财预〔2024〕105号-《关于省级政务信息化建设项目支出预算标准的规定》-费用标准解读系列29

2024年12月3日&#xff0c;河南省财政厅发布了《关于省级政务信息化建设项目支出预算标准的规定》豫财预〔2024〕105号。《关于省级政务信息化建设项目支出预算标准的规定 &#xff08;试行&#xff09;》&#xff08;豫财预 〔2020〕81号&#xff09;同时废止。新的豫财预〔20…

导入numpy报错:PyCapsule_Import could not import module “datetime“

背景 docker部署深度学习算法时&#xff0c;安装miniconda报错&#xff0c;报线程错误。 然后在构建镜像时把miniconda装进去没有问题。 然后把环境移进去发现报numpy导入错误 在python解释器尝试导入numpy发现还是报错 尝试重新装numpy&#xff0c;发现没有解决。 网上找解决方…

TANGO与LabVIEW控制系统集成

TANGO 是一个开源的设备控制和数据采集框架&#xff0c;主要用于管理实验室设备、自动化系统和工业设备。它为不同类型的硬件提供统一的控制接口&#xff0c;并支持设备之间的通信&#xff0c;广泛应用于粒子加速器、同步辐射光源、实验室自动化和工业控制等领域。 1. TANGO的核…

利用Circuit JS1再学学电子方面的知识(硬件)

1 电阻器 1.1 电阻并联 每个电阻电压相同&#xff0c;总电流等于各支路电流之和。 并联电阻值 R 1/(1/R11/R2);R约等于90.9 电阻并联后的阻值比最小的一个电阻值都小。 1.2 电阻串联 电阻串联的阻值为各电阻阻值相加。 RR1R2&#xff0c;串联涉及电阻分压。 一般在开关处…

使用Amazon Bedrock的无服务器的智能工作流

使用Amazon Bedrock的无服务器的智能工作流 智能工作流基于用户输入处理不可预见的任务&#xff0c;比如发起API调用。无服务器架构可以高效地管理这些任务和不同的工作负载&#xff0c;而无需维护服务器&#xff0c;从而加快部署速度。 你将学习如何通过使用带有保护措施的智能…

国高材服务 | 高分子结晶动力学表征——高低温热台偏光显微镜

众所周知&#xff0c;聚合物制品的实际使用性能&#xff08;如光学透明性、硬度、模量等&#xff09;与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系&#xff0c;因此&#xff0c;对聚合物结晶形态等的研究具有重要的理论和实际意义。 随着结晶条件的不用&#xff0c…

【LeetCode每日一题】——415.字符串相加

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 字符串 二【题目难度】 简单 三【题目编号】 415.字符串相加 四【题目描述】 给定两个字符…

idea设置控制台日志输出自动换行

文章目录 1. 原因2. 方法一&#xff1a;3. 方法二&#xff1a; 1. 原因 你是否碰到ideal控制台输入日志是一行的效果&#xff0c;那是因为带了soft wrap。 2. 方法一&#xff1a; 最新版的IDEA设置控制台自动换行位置如下&#xff1a; Setting->Editor->General->C…

探索多模态大语言模型(MLLMs)的推理能力

探索多模态大语言模型&#xff08;MLLMs&#xff09;的推理能力 Multimodal Large Language Models (MLLMs) flyfish 原文&#xff1a;Exploring the Reasoning Abilities of Multimodal Large Language Models (MLLMs): A Comprehensive Survey on Emerging Trends in Mult…