Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
- CIFAR数据集
- FGSM介绍
- FGSM代码实现
- FGSM算法实现
- 攻击效果
- 代码汇总
- fgsm.py
- train.py
- advtest.py
之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类
本篇文章我们使用Pytorch实现快速梯度符号攻击Fast Gradient Sign Method, FGSM)对CIFAR10上的ResNet分类器进行攻击.
CIFAR数据集
CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:
- 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
- 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
- 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。
下面是一些示例样本:
FGSM介绍
FGSM(Fast Gradient Sign Method)算法是一种基于梯度的快速攻击算法,由Goodfellow等人在2015年提出,主要用于评估神经网络模型的鲁棒性。以下是对FGSM算法原理的详细介绍:
算法原理
- FGSM算法的核心思想是利用神经网络的梯度信息来生成对抗样本。对于给定的输入样本,通过计算模型对该样本的损失函数关于输入的梯度,然后根据梯度的符号来确定扰动的方向,最后在该方向上添加一个小的扰动,得到对抗样本。
- 具体而言,给定一个输入样本 x x x,其对应的真实标签为 y y y,模型的参数为 θ \theta θ,损失函数为 J ( θ , x , y ) J(\theta, x, y) J(θ,x,y)。首先计算损失函数 J J J 关于输入 x x x 的梯度 ∇ x J ( θ , x , y ) \nabla_x J(\theta, x, y) ∇xJ(θ,x,y),然后根据梯度的符号确定扰动的方向 sign ( ∇ x J ( θ , x , y ) ) \text{sign}(\nabla_x J(\theta, x, y)) sign(∇xJ(θ,x,y)),最后生成对抗样本 x ′ = x + ϵ ⋅ sign ( ∇ x J ( θ , x , y ) ) x' = x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y)) x′=x+ϵ⋅sign(∇xJ(θ,x,y)),其中 ϵ \epsilon ϵ 是一个很小的正数,用于控制扰动的大小。
FGSM代码实现
FGSM算法实现
import torch
import torch.nn as nn
def FGSM(model, criterion, original_images, labels, epsilon):
"""
FGSM (Fast Gradient Sign Method)
参数:
- model: 要攻击的模型
- criterion: 损失函数
- original_images: 原始图像
- labels: 原始图像的标签
- epsilon: 扰动幅度
"""
perturbed_images = original_images.clone().detach().requires_grad_(True)
outputs = model(perturbed_images)
loss = criterion(outputs, labels)
model.zero_grad()
loss.backward()
data_grad = perturbed_images.grad.data
sign_data_grad = data_grad.sign()
perturbed_images = perturbed_images + epsilon * sign_data_grad
perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
return perturbed_images
攻击效果
代码汇总
fgsm.py
import torch
import torch.nn as nn
def FGSM(model, criterion, original_images, labels, epsilon):
"""
FGSM (Fast Gradient Sign Method)
参数:
- model: 要攻击的模型
- criterion: 损失函数
- original_images: 原始图像
- labels: 原始图像的标签
- epsilon: 扰动幅度
"""
perturbed_images = original_images.clone().detach().requires_grad_(True)
outputs = model(perturbed_images)
loss = criterion(outputs, labels)
model.zero_grad()
loss.backward()
data_grad = perturbed_images.grad.data
sign_data_grad = data_grad.sign()
perturbed_images = perturbed_images + epsilon * sign_data_grad
perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)
return perturbed_images
train.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
if __name__ == "__main__":
# 训练模型
for epoch in range(10): # 可以根据实际情况调整训练轮数
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')
running_loss = 0.0
torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')
print('Finished Training')
advtest.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as plt
ssl._create_default_https_context = ssl._create_unverified_context
# 定义数据预处理操作
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])
# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet18(num_classes=10).to(device)
criterion = nn.CrossEntropyLoss()
# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))
if __name__ == "__main__":
# 在测试集上进行FGSM攻击并评估准确率
model.eval() # 设置为评估模式
correct = 0
total = 0
epsilon = 16 / 255 # 可以调整扰动强度
for data in testloader:
original_images, labels = data[0].to(device), data[1].to(device)
original_images.requires_grad = True
attack_name = 'FGSM'
if attack_name == 'FGSM':
perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)
perturbed_outputs = model(perturbed_images)
_, predicted = torch.max(perturbed_outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
# Attack Success Rate
ASR = 100 - accuracy
print(f'Load ResNet Model Weight from {weights_path}')
print(f'epsilon: {epsilon}')
print(f'ASR of {attack_name} : {ASR}%')