大语言模型学习工具及资源总结和落地应用

news2024/12/24 18:42:05

        当前,随着人工智能技术的迅猛发展,大语言模型(Large Language Models, LLMs)在各个领域的应用日益广泛。以下是国内外常见的大语言模型工具、已经落地部署的应用以及学习相关的网站和资源的详细介绍。

一、国内外常见的大语言模型工具

国际大语言模型

1.OpenAI GPT 系列

  • GPT-3:具有1750亿参数,广泛应用于文本生成、翻译、问答系统等。
  • GPT-4:相比GPT-3在理解和生成能力上有显著提升,支持多模态输入。

2.Google BERT(Bidirectional Encoder Representations from Transformers)

  • 主要用于自然语言理解任务,如问答系统、情感分析等。

3.Google PaLM(Pathways Language Model)

  • 具备更强的推理和理解能力,支持多语言处理。

4.Facebook(Meta)LLaMA(Large Language Model Meta AI)

  • 提供不同规模的模型版本,适用于科研和商业应用。

5.Microsoft Turing-NLG

  • 专注于生成自然、流畅的文本,应用于聊天机器人、内容生成等。

国内大语言模型

1.百度文心(ERNIE 系列)

  • 文心一言:基于ERNIE 3.0,具备多种语言理解与生成能力,应用于智能客服、内容生成等。
  • 文心ERNIE Bot:针对中文优化的对话模型,提升对中文语境的理解。

2.阿里巴巴M6

  • 具备多模态能力,支持文本、图片生成,应用于电商、内容创作等。

3.腾讯Hunyuan

  • 提供多种自然语言处理能力,应用于社交媒体分析、智能推荐等。

4.华为盘古(PanGu-α)

  • 面向多种下游任务优化,应用于企业智能化解决方案。

5.讯飞星火(Spark)

  • 侧重语音与文本结合的应用,如智能助手、语音转写等。

二、已经落地部署的应用

1.智能客服与虚拟助手

  • 京东小微客服:基于大语言模型,提供7x24小时智能客服服务,提升用户体验。
  • 小冰(微软):融合多模态技术,提供情感互动的虚拟助手。

2.内容生成与编辑

  • 自动写作工具:如OpenAI的ChatGPT,用于博客、新闻报道、市场营销内容的生成。
  • 文心一言:助力企业生成产品描述、广告文案等。

3.翻译与语言理解

  • Google翻译:基于大语言模型,支持多语言实时翻译,应用于跨语言沟通。
  • 百度翻译:优化中文处理,提升翻译准确性和流畅度。

4.教育与培训

  • 智能辅导系统:利用LLMs提供个性化学习建议和答疑,如猿辅导智能问答。
  • 在线教育平台:通过大语言模型生成教学内容和测评题目。

5.医疗健康

  • 智能问诊:如平安好医生的智能问答系统,辅助医生诊断和患者咨询。
  • 医疗文献分析:使用LLMs进行海量医学文献的快速整理与分析。

6.企业智能化

  • 智能文档处理:自动摘要、信息提取,提升企业办公效率。
  • 智能推荐系统:基于用户行为和文本分析,提供个性化推荐服务。

7.社交媒体与社区管理

  • 内容审核:利用LLMs自动识别不良信息,保障社区健康环境。
  • 社交互动:如微博、微信的智能回复功能,提升用户互动体验。

三、学习网站及资源

在线课程与培训平台

1.Coursera

  • 提供如斯坦福大学的《自然语言处理》课程,涵盖LLMs的基础与应用。

2.edX

  • 提供MIT、哈佛等高校的AI和NLP相关课程。

3.Udemy

  • 丰富的实战课程,如《深度学习与自然语言处理实战》。

4.网易云课堂

  • 国内平台,提供大语言模型及NLP相关的课程,适合中文学习者。

5.慕课网

  • 涵盖机器学习、深度学习和自然语言处理的在线课程。

在线文档与教程

1.Hugging Face

  • Hugging Face 文档 提供丰富的LLMs使用教程和示例。

2.OpenAI官方文档

  • OpenAI API 文档 详细介绍GPT系列模型的使用方法。

3.百度AI Studio

  • 百度文心星火平台 提供文心系列模型的使用教程和示例。

4.阿里云机器学习平台

  • 提供M6模型的使用文档和案例。

开源资源与社区

1.GitHub

  • 搜索相关的大语言模型项目,如GPT-3、BERT、LLaMA等,获取代码实现和应用示例。

2.Kaggle

  • 参与自然语言处理竞赛,获取数据集和解决方案,提升实践能力。

3.知乎

  • 关注相关话题,如“自然语言处理”、“大语言模型”,获取专业讨论和经验分享。

4.CSDN

  • 阅读技术博客和教程,了解最新的LLMs应用和优化技巧。

5.中文NLP社区

  • 如「机器之心」、「极市平台」,提供丰富的中文资源和讨论。

书籍推荐

1.《深度学习》(Ian Goodfellow 等著)

  • 基础知识,理解深度学习的核心原理。

2.《自然语言处理综论》

  • 系统介绍NLP领域的基本方法和最新进展。

3.《Transformer 模型详解》

  • 深入理解Transformer架构及其在LLMs中的应用。

4.《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》

  • 实践导向,帮助读者掌握构建和训练LLMs的技巧。

四、总结

大语言模型作为人工智能领域的重要突破,正在深刻改变各行各业的工作方式和用户体验。无论是国内外的主流模型,还是丰富的应用场景,都展示了LLMs的巨大潜力。对于希望深入学习和应用大语言模型的开发者和研究者,利用上述学习资源和平台,可以系统地掌握相关知识,提升技术能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2264868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GitCode 光引计划投稿|MilvusPlus:开启向量数据库新篇章

在人工智能和大数据时代,向量数据库作为处理非结构化数据的核心技术,正变得越来越重要。MilvusPlus,作为「光引计划」的一部分,应运而生,旨在提供一个高性能、易扩展、全功能的向量数据库解决方案。项目背景根植于对现…

一起学Git【第四节:添加和提交文件】

通过前三节的学习,基本上对Git有了初步的了解,下面开始进行文件的添加和提交的流程。 这里主要涉及四个命令: git init 创建仓库git status查看仓库状态git add添加至暂存区git commit提交文件之前已经使用过git init命令了,此处不再具体讲解。参照一起学Git【第二节:创建…

RISC-V架构的压缩指令集介绍

1、压缩指令集介绍 RISC-V的压缩指令集(C扩展)‌是一种设计用于减少代码大小和提高性能的技术。标准的RISC-V指令是32位,压缩指令集可以将部分32位的指令用16位的指令替代,从未减小程序占用存储空间的大小,提高指令密…

CosyVoice安装过程详解

CosyVoice安装过程详解 安装过程参考官方文档 前情提要 环境:Windows子系统WSL下安装的Ubunt22.4python环境管理:MiniConda3git 1. Clone代码 $ git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git # 若是submodule下载失败&…

docker 容器的基本使用

docker 容器 一、docker是什么? 软件的打包技术,就是将算乱的多个文件打包为一个整体,打包技术在没有docker容器之前,一直是有这种需求的,比如上节课我把我安装的虚拟机给你们打包了,前面的这种打包方式是…

【计算机视觉基础CV-图像分类】05 - 深入解析ResNet与GoogLeNet:从基础理论到实际应用

引言 在上一篇文章中,我们详细介绍了ResNet与GoogLeNet的网络结构、设计理念及其在图像分类中的应用。本文将继续深入探讨如何在实际项目中应用这些模型,特别是如何保存训练好的模型、加载模型以及使用模型进行新图像的预测。通过这些步骤,读…

被裁20240927 --- 嵌入式硬件开发 前篇

前篇主要介绍一些相关的概念,用于常识扫盲,后篇开始上干货! 他捧着一只碗吃过百家的饭 1. 处理器芯片1.1 处理器芯片制造商一、 英特尔(Intel)二、 三星(SAMSUNG)三、 高通(Qualcomm…

【uni-app】2025最新uni-app一键登录保姆级教程(包含前后端获取手机号方法)(超强避坑指南)

前言: 最近在配置uni-app一键登录时遇到了不少坑,uni-app的配套文档较为混乱,并且有部分更新的内容也没有及时更改在文档上,导致部分开发者跟着uni-app配套文档踩坑!而目前市面上的文章质量也层次不齐,有的…

C# 范围判断函数

封装范围函数 public static class CommonUtil {/// <summary>/// 范围判断函数&#xff0c;检查给定的值是否在指定的最小值和最大值之间。/// 例如&#xff0c;可以用来判断当前日期是否在开始日期和结束日期之间。/// 该方法适用于任何实现了 IComparable 接口的类型…

一起学Git【第五节:git版本回退】

git reset 是 Git 版本控制系统中一个非常强大的命令&#xff0c;它可以用来重置当前分支到指定的状态&#xff0c;即执行撤销操作或者回退至之前的某一版本&#xff0c;他可以回退至之前的某一个提交状态。有三种主要的用法&#xff1a;git reset --soft&#xff1b;git reset…

谷歌浏览器 Chrome 提示:此扩展程序可能很快将不再受支持

问题现象 在Chrome 高版本上的扩展管理页面&#xff08;地址栏输入chrome://extensions/或者从界面进入&#xff09;&#xff1a; &#xff0c; 可以查看到扩展的情况。 问题现象大致如图: 问题原因 出现此问题的根本原因在于&#xff1a;谷歌浏览器本身的扩展机制发生了…

国标GB28181-2022平台EasyGBS:安防监控中P2P的穿透方法

在安防监控领域&#xff0c;P2P技术因其去中心化的特性而受到关注&#xff0c;尤其是在远程视频监控和数据传输方面。P2P技术允许设备之间直接通信&#xff0c;无需通过中央服务器&#xff0c;这在提高效率和降低成本方面具有明显优势。然而&#xff0c;P2P技术在实际应用中也面…

Go1.21.0 到 Go1.23.0 的改动,向前兼容性和toolchain规则,Go1.21.0,必须升级你的Go啦

Go各版本Release Note Go1.21.0 2023-08-08 https://go.dev/doc/go1.21 内置方法 min & max&#xff1a;返回一个序列中的最大值最小值。 https://go.dev/ref/spec#Min_and_max clear&#xff1a;清空map和slice。 https://go.dev/ref/spec#Clear 标准库 log/slo…

springboot472基于web网上村委会业务办理系统(论文+源码)_kaic

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本网上村委会业务办理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数…

数据库压力测试详解

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 很多人提到 jmeter 时&#xff0c;只会说到 jmeter进行接口自动化或接口性能测试&#xff0c;其实jmeter还能对数据库进行自动化操作。个人常用的场景有以下&#…

深度学习中,用损失的均值或者总和反向传播的区别

如深度学习中代码&#xff1a; def train_epoch_ch3(net, train_iter, loss, updater):"""The training loop defined in Chapter 3."""# Set the model to training modeif isinstance(net, torch.nn.Module):net.train()# Sum of training lo…

UML图【重要】

文章目录 2.1 类图概述2.2 类图的作用2.3 类图表示法2.3.1 类的表示方式2.3.2 类与类之间关系的表示方式2.3.2.1 关联关系2.3.2.2 聚合关系2.3.2.3 组合关系2.3.2.4 依赖关系2.3.2.5 继承关系2.3.2.6 实现关系 统一建模语言&#xff08;Unified Modeling Language&#xff0c;U…

Flask中@app.route()的methods参数详解

诸神缄默不语-个人CSDN博文目录 在 Flask 中&#xff0c;app.route 是用于定义路由的核心装饰器&#xff0c;开发者可以通过它为应用指定 URL 映射及相应的处理函数。在处理 HTTP 请求时&#xff0c;不同的业务场景需要支持不同的 HTTP 方法&#xff0c;而 app.route 的 metho…

JavaSE---String(含一些源码)

&#xff08;一&#xff09;字符串构造 我们如何创建一个String类型的对象&#xff1f;有三种&#xff1a; String s1new String("hello"); //直接new一个String对象String s2"hello"; //使用常量串构造final char[] chars {h,e,l,l,o}; Strin…

0.96寸OLED显示屏详解

我们之前讲了 LCD1602&#xff0c;今天我们将它的进阶模块——OLED。它接线更少&#xff0c;性能更强&#xff0c;也能显示中文和图像了。 大家在学习单片机的时候是否会遇到调试的问题呢&#xff1f;例如 “这串代码我到底运行成功了没有” &#xff0c;我相信很多刚开始学习…