【Linux系统编程】:信号(2)——信号的产生

news2024/12/23 11:33:37

1.前言

我们会讲解五种信号产生的方式:

  • 通过终端按键产生信号,比如键盘上的Ctrl+C。
  • kill命令。本质上是调用kill()
  • 调用函数接口产生信号
  • 硬件异常产生信号
  • 软件条件产生信号
    前两种在前一篇文章中做了介绍,本文介绍下面三种.

2. 调用函数产生信号

2.1 kill()在这里插入图片描述

sig是信号编码,pid是捕获信号的进程pid。
我们编写一个程序proc.c,

#include <stdio.h>
#include <unistd.h>

int main()
{
    while(1)
    {
        printf("I am a process, pid: %d\n", getpid());
        sleep(1);
    }
}

利用mykill中的kill()杀掉它,

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
using namespace std;
//argv*[]:mykill pid signal
int main(int argc, char const *argv[])
{
    if(argc != 3)
    {
        cout << "usage: ./mykill signal pid" << endl;//告诉用户用法
        exit(1);
    }
    int signo= atoi(argv[1]);
    int pid = atoi(argv[2]);
    int ret = kill(pid, signo);
    if(ret == -1)
    {
        perror("kill");
        exit(2);
    }
    //kill函数返回值:成功返回0,失败返回-1
    return 0;
}

在这里插入图片描述

2.2 raise()

在这里插入图片描述
raise(sig)是对kill(getpid(),sig)的封装。

2.3 abort()

在这里插入图片描述
我们编写代码来测试一下abort函数,

#include <iostream>
#include <cstdlib>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
using namespace std;

void myhandler(int signo)
{
    cout << "process get a signal: " << signo <<endl;
    // exit(1);
}
int main(int argc, char *argv[])
{  
    int cnt = 0;
    while (true)
    {
        cout << "I am a process, pid: " << getpid() << endl;
        sleep(1);
        cnt++;
        if(cnt % 2 == 0) 
        {
            abort();
        }
    }
}

重新编译并运行,在这里插入图片描述
我们怎么确定abort()调用的是6号信号呢?我们可以捕捉6号信号,修改代码为:

//头文件等略
void myhandler(int signo)
{
    cout << "process get a signal: " << signo <<endl;
}
int main(int argc, char *argv[])
{  
    signal(SIGABRT, myhandler);
    int cnt = 0;
    while (true)
    {
        cout << "I am a process, pid: " << getpid() << endl;
        sleep(1);
        cnt++;
        if(cnt % 2 == 0) 
        {
            abort();
        }
    }
}

在这里插入图片描述

SIGABRT确实被捕获到了,可为什么最后还是调用了abort()呢?不是应该一直循环下去吗?
我们将abort()注释掉,换成“kill(getpid(), 6);”,在这里插入图片描述
重新编译运行,在这里插入图片描述
发现程序没有推掉,说明abort()虽然是对SIGABORT的封装,但后面还增加了自己的细节,致使所在进程退出,而SIGABORT不会终止进程,它表示程序出现异常。

3. 硬件异常产生信号

3.1 “除0代码”

我们编写一段“除0代码”

#include <iostream>
#include <unistd.h>

using namespace std;

int main()
{   
    cout << "div before" << endl;
    sleep(5);
    int a = 10;
    a /= 0;//异常
    cout << "div after" << endl;
    sleep(1);
    return 0;
}

编译运行,
在这里插入图片描述
输入指令“man 7 signal”,查阅信号对应的注释,在这里插入图片描述
找到注释对应的信号SIGFPE,在这里插入图片描述
是8号信号中断了该进程。我们尝试捕获*号信号,

#include <iostream>
#include <unistd.h>
#include <signal.h>

using namespace std;

void handler(int signo)
{
	sleep(1);
    cout << "catch signal" << signo << endl;
}
int main()
{   
    signal(SIGFPE,handler);
    cout << "div before" << endl;
    sleep(5);
    
    int a = 10;
    a /= 0;//异常
    cout << "div after" << endl;
    sleep(1);
    return 0;
}

重新编译运行,并监视
在这里插入图片描述
我们发现,当SIGFPE被捕获后,进程不会退出,并且一直执行“自定义行为”(也就是一直打印)。

3.2 “野指针代码”

我们编写一段“野指针代码”,

#include <iostream>
#include <unistd.h>
#include <signal.h>
using namespace std;
int main()
{   
    cout << "point error before" << endl;
    sleep(3);
    int *p = nullptr;
    *p = 10;
    cout << "point error after" << endl;
    sleep(1);
    return 0;
}

在这里插入图片描述
段错误是11号信号,也就是内存错误,在这里插入图片描述
我们捕捉该信号,

#include <iostream>
#include <unistd.h>
#include <signal.h>
using namespace std;
void handler(int signo)
{
    cout << "catch signal:" << signo << endl;
    sleep(1);
}
int main()
{   
    signal(SIGSEGV,handler);
    cout << "point error before" << endl;
    sleep(3);
    int *p = nullptr;
    *p = 10;
    cout << "point error after" << endl;
    sleep(1);
    return 0;
}

在这里插入图片描述
同样,11号信号被捕捉后,段错误异常就不会终止进程。
所以程序出现异常,进程不一定会被终止,当然,这是因为我们自定义了进程接收到信号后的处理行为。所以一般情况下,进程出现异常了,都会终止。

3.3 为什么“除0、野指针”会让进程终止呢?

这是因为操作系统遇到“除0、野指针”问题,会发送信号给进程,进程处理信号会终止自己。这也说明,不论产生信号的方式是什么,最终都是由操作系统发送信号给进程。
但这不是关键,关键是操作系统怎么知道代码中的“除0、野指针”问题,

  • 对于除0错误:当CPU从上到下执行程序的代码时,如果遇到了除0,CPU中的状态寄存器的溢出标志位就会由0变为1,操作系统就知道CPU当前调度的进程出现了异常(操作系统是硬件的管理者)。注意:寄存器信息是进程的上下文,进程之间是独立的,所以上个进程的溢出标识符为1,并不会影响到下一个进程,更不会让操作系统出错。
    总结:除0问题会被转换成硬件问题,表现在硬件上,从而被操纵系统识别到,操作系统就会处理该问题,该问题并不会影响到操作系统的稳定性,只会影响到当前进程(异常的进程)。
    在这里插入图片描述
    那么我们捕获信号后为什么程序会一直打印而不崩溃呢?
    这是因为问题一直没有被修复,当进程被调度进CPU,状态寄存器"出错",操作系统向当前进程发送信号,进程执行信号打印,打印完后上下文中的错误又没被修复,进程还一直在调度运行中,状态寄存器一直”出错“,操作系统一直发送信号,所以程序一直打印。
    那么捕捉信号不修正问题,为什么还要有“自定义信号处理”的方法呢?
    自定义信号捕捉是为了让用户知道程序为什么崩溃,便于打印日志,以及保存崩溃前的信息。而不是为了让用户直接解决当前的进程异常问题。

  • 对于“野指针”问题,是因为虚拟地址无法经过页表转换为物理内存地址(可能溢出或者没有访问权限),而页表是由MMU维护的,MMU会发送对应的信号被操作系统识别。

4.软件条件产生异常

处理硬件可能产生异常,软件也可能产生异常。比如我们在匿名管道一章讲解的管道四大特征之一:当管道的写端被关闭后,读端的进程会自动退出。这是13号信号SIGPIPE造成的。
软件运行中,可能会出现一些特殊事项,致使软件的一些条件没有被满足,就可能产生异常。
我们拿alarm()举例,

4.1 alarm

alarm() 函数是 Unix 和类 Unix 系统编程中的一个标准函数,它用于设置一个定时器,当定时器到达指定时间后,会向进程发送一个 SIGALRM 信号。这个函数通常用于实现定时任务或超时处理。

函数原型

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

参数

  • seconds:定时器的秒数。如果设置为 0,则会关闭之前设置的定时器。

返回值

  • 返回值是之前定时器剩余的时间(秒),也就是前一个闹钟要响起的剩余时间,防止多个闹钟在同一时间响起。如果之前没有设置定时器,则返回 0。

使用示例

以下是一个简单的 C 程序示例,演示如何使用 alarm() 函数:

#include <iostream>
#include <unistd.h>
using namespace std;

int main()
{   
    int n = alarm(5);//设置一个5秒的闹钟
    while(1)
    {
        cout << "the proc is running" << endl;
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
我们在查一下信号表,在这里插入图片描述
这样我们还不确信,可以捕获该信号测试一下,

#include <iostream>
#include <unistd.h>
#include <signal.h>
using namespace std;
void handler(int signo)
{
    cout << "catch a signal,the number:" << signo << endl;
    sleep(1);
}
int main()
{   
    int n = alarm(5);//设置一个5秒的闹钟
    signal(SIGALRM,handler);
    while(1)
    {
        cout << "the proc is running" << endl;
        sleep(1);
    }
 }

在这里插入图片描述
这个闹钟为什么只响一次呢?我们之前的“野指针”和“除0”都不断的打印自定义行为,这个却打印一次,因为闹钟不是异常。
如果我们要让闹钟每隔5秒打印一次,可以在handler()修改为,

void handler(int signo)
{
    cout << "catch a signal,the number:" << signo << endl;
    alarm(5);
}

在这里插入图片描述
我们利用这个原理,可以让进程每隔一段时间执行特定的工作,比如打印日志。

void work()
{
    cout << "print log..." << endl;
}
void handler(int signo)
{
    work();
    cout << "catch a signal,the number:" << signo << endl;
    alarm(5);
}

注意事项

  • alarm() 只能设置以秒为单位的定时器,如果需要更精确的时间控制,可以考虑使用 setitimer()timer_create() 等函数。
  • alarm() 设置的定时器是单次的,如果需要重复触发,需要在信号处理函数中再次调用 alarm()
  • 在多线程程序中使用 alarm() 时要特别小心,因为它是针对整个进程的,可能会影响其他线程的行为。

5. Core dump

在这里插入图片描述
SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,Core Dump是什么意思呢?
我们在进程等待中也提到过Core Dump,在这里插入图片描述
我们编写一段父进程回收子进程的代码,分别用8号信号和2号信号终止子进程,获取子进程的core dump标志,
在这里插入图片描述
2号信号和8号信号杀死进程的core dump标志确实不一样,那么这个表示到底是什么意思呢?
由于云服务器一般把core file文件的大小设为0(相当于关闭了core dump的功能),或者操作系统重新配置了core文件生成的目录,所以我们用ll查看当前目录,不会看到相关文件,我们可以用ulimit -a查看系统资源的限制信息,其中就包括core文件的大小,然后用“ulimit -c 10240",将core file 的大小设置为10240K,
在这里插入图片描述
然后重新运行程序,再用8号信号杀死,此时如果还看不到相关的core文件,可在命令行输入“sudo bash -c "echo core.%p > /proc/sys/kernel/core_pattern”,core文件不存在的原因
在这里插入图片描述
重新编译再杀死进程,就有对应的core文件了。
所以,一旦打开了系统的core dump功能,某个进程因异常而被Action为core的信号终止时,操作系统就会将进程在内存中的运行信息,dump(转储)到进程的工作目录下(磁盘中),形成core.pid文件。
那么core.pid文件有什么用呢?
该文件保存了程序中断的原因,可以帮助我们更好的识别、修改bug。
在这里插入图片描述

为什么core dump默认是关闭的呢?

在 Linux 系统中,core dump 默认是关闭的,主要原因有以下几点:

  1. 磁盘空间占用:core dump 文件会包含程序在崩溃时的内存映像,包括代码段、数据段、堆、栈等信息,其大小可能非常大,尤其是对于大型应用程序。如果系统中多个程序频繁崩溃并生成 core dump 文件,会占用大量的磁盘空间,影响系统的正常运行和存储资源的使用效率。
  2. 性能影响:生成 core dump 文件需要将大量内存数据写入磁盘,这个过程可能会消耗较多的 I/O 资源,导致系统性能下降。对于一些对性能要求较高的系统或应用程序,这种性能损失是不可接受的。
  3. 安全性考虑:core dump 文件可能包含程序运行时的敏感信息,如用户数据、加密密钥、系统配置等。如果这些文件被未授权的用户访问,可能会导致信息泄露,带来安全隐患。因此,默认关闭 core dump 功能可以在一定程度上保护系统的安全性。
  4. 管理复杂性:如果系统中所有程序都默认开启 core dump 功能,可能会导致生成大量的 core dump 文件,增加了系统管理员管理和分析这些文件的复杂性。管理员需要定期清理这些文件,以避免磁盘空间被占用,同时还需要对每个文件进行分析,以确定程序崩溃的原因,这会消耗大量的时间和精力。

当然,core dump 文件对于程序开发和故障排查是非常有用的,它可以帮助开发者快速定位程序崩溃的原因,提高程序的稳定性和可靠性。因此,在需要调试程序或分析程序崩溃原因时,可以手动启用 core dump 功能,并根据实际情况设置合适的文件大小限制和保存路径。

来源:https://kimi.moonshot.cn/chat/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2264208.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

腾讯云智能结构化OCR:以多模态大模型技术为核心,推动跨行业高效精准的文档处理与数据提取新时代

&#x1f3bc;个人主页&#xff1a;【Y小夜】 &#x1f60e;作者简介&#xff1a;一位双非学校的大三学生&#xff0c;编程爱好者&#xff0c; 专注于基础和实战分享&#xff0c;欢迎私信咨询&#xff01; &#x1f386;入门专栏&#xff1a;&#x1f387;【MySQL&#xff0…

内核执行时动态的vmlinux的反汇编解析方法及static_branch_likely机制

一、背景 在之前的博客里&#xff0c;我们讲到了tracepoint&#xff08;内核tracepoint的注册回调及添加的方法_tracepoint 自定义回调-CSDN博客&#xff09;和kprobe&#xff08;获取任意一个进程的共享内存的fd对应的资源&#xff0c;增加引用&#xff0c;实现数据的接管——…

Burp与其他安全工具联动及代理设置教程

Burp Suite 是一款功能强大的 Web 安全测试工具&#xff0c;其流量拦截和调试功能可以与其他安全工具&#xff08;如 Xray、Yakit、Goby 等&#xff09;实现联动&#xff0c;从而提升渗透测试的效率。本文将详细讲解 Burp 与其他工具联动的原理以及代理设置的操作方法&#xff…

Git配置公钥步骤

GIt公钥的配置去除了git push输入账号密码的过程&#xff0c;简化了push流程。 1.生成SSH公钥和私钥 ssh-keygen -t rsa -b 4096 -C “your_emailexample.com” 遇到的所有选项都按回车按默认处理。获得的公钥私钥路径如下&#xff1a; 公钥路径 : ~/.ssh/id_rsa.pub 私钥路径…

【蓝桥杯选拔赛真题96】Scratch风车旋转 第十五届蓝桥杯scratch图形化编程 少儿编程创意编程选拔赛真题解析

目录 scratch风车旋转 一、题目要求 编程实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、python资料 scratc…

未来 AI 在企业应用中的重心

1. LLM 中精度、参数、数据、性能、以及成本之间的权衡是什么&#xff1f; 在大型语言模型&#xff08;LLM, Large Language Models&#xff09;中&#xff0c;精度、参数数量、训练数据量、性能和成本之间的权衡是一个复杂且多维度的问题。以下是这些因素之间关系的简要分析&…

Docker 安装 禅道-21.2版本-外部数据库模式

Docker 安装系列 1、拉取最新版本&#xff08;zentao 21.2&#xff09; [rootTseng ~]# docker pull hub.zentao.net/app/zentao Using default tag: latest latest: Pulling from app/zentao 55ab1b300d4b: Pull complete 6b5749e5ef1d: Pull complete bdccb03403c1: Pul…

排序算法 (插入,选择,冒泡,希尔,快速,归并,堆排序)

排序:经常在算法题中作为一个前置操作,为了之后的贪心or else做个铺垫,虽然我们经常都只是调用个sort,但是了解一些排序算法可以扩充下知识库 排序的分类: 从存储设备角度&#xff1a; ✓ 内排序&#xff1a;在排序过程中所有数据元素都在内存中&#xff1b; ✓ 外排序&a…

web复习(五)

一、补零 二、打印出五行五列的星星 三、用户输入行数和列数并打印相应行数和列数的⭐ 四、打印倒三角星星&#xff08;第一行一个&#xff0c;第二行两个...&#xff0c;以此类推&#xff09; 五、用户输入秒数&#xff0c;可以自动转换为时分秒 六、随机点名

法规标准-C-NCAP评测标准解析(2024版)

文章目录 什么是C-NCAP&#xff1f;C-NCAP 评测标准C-NCAP评测维度三大维度的评测场景及对应分数评星标准 自动驾驶相关评测场景评测方法及评测标准AEB VRU——评测内容(测什么&#xff1f;)AEB VRU——评测方法(怎么测&#xff1f;)车辆直行与前方纵向行走的行人测试场景&…

XRP价格跌破2.20美元 1.94美元是否下一波牛市的关键支撑?

原文转自&#xff1a;XRP价格跌破2.20美元 1.94美元是否下一波牛市的关键支撑&#xff1f; - 币热网 - 区块链数字货币新闻消息资讯 XRP价格经历剧烈波动后强势反弹&#xff0c;$1.94或成新牛市关键支撑 在过去24小时内&#xff0c;XRP价格经历了一场过山车式的剧烈波动。价…

centos-stream9系统安装docker

如果之前安装过docker需要删除之前的。 sudo dnf -y remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine 安装yum-utils工具&#xff1a; dnf -y install yum-utils dnf-plugin…

H264编解码标准码流分析:SPS语法

H264编解码标准 SPS 语法解析 解释:H264编解码标准中的SPS(Sequence Parameter Set,序列参数集)是一组编码视频序列的全局参数,包含了视频编码序列的基本属性和配置信息。分析工具:elecard streamEye、elecard StreamAnalyzer、h264Visa 等elecard StreamAnalyzer 展示形…

使用 AI 辅助开发一个开源 IP 信息查询工具:一

本文将分享如何借助当下流行的 AI 工具,一步步完成一个开源项目的开发。 写在前面 在写代码时&#xff0c;总是会遇到一些有趣的机缘巧合。前几天&#xff0c;我在翻看自己之前的开源项目时&#xff0c;又看到了 DDNS 相关的讨论。虽然在 2021 年我写过两篇相对详细的教程&am…

门控循环单元(GRU):深度学习中的序列数据处理利器

目录 ​编辑 引言 GRU的诞生背景 GRU的核心机制 GRU的计算过程 GRU的数学公式 GRU的应用领域 代码示例&#xff1a;PyTorch中的GRU GRU与LSTM的比较 参数比较 GRU的技术发展 BiGRU&#xff08;双向GRU&#xff09; BiGRU的实现示例 GRU与CNN的结合 GRU的应用案例…

Sui 基金会任命 Christian Thompson 为新任负责人

Sui 基金会是专注于推动 Sui 蓬勃发展的生态增长与采用的机构。近日&#xff0c;基金会宣布任命 Christian Thompson 为新任负责人。在 Sui 主网发布的开创性一年里&#xff0c;Sui 凭借其无与伦比的速度、可扩展性和效率&#xff0c;迅速崛起为领先的 Layer 1 区块链之一&…

Vue2五、商品分类:My-Tag表头组件,My-Table整个组件

准备&#xff1a; 安包 npm less less-loader。拆分&#xff1a;一共分成两个组件部分&#xff1a; 1&#xff1a;My-Tag 标签一个组件。2&#xff1a;My-Table 整体一个组件&#xff08;表头不固定&#xff0c;内容不固定&#xff08;插槽&#xff09;&#xff09; 一&…

mysql运维篇笔记——日志,主从复制,分库分表,读写分离

目录 日志 错误日志 二进制日志 查询日志 慢查询日志 主从复制 概念&#xff1a; 优点&#xff1a; 原理&#xff1a; 搭建&#xff1a; 1&#xff0c;服务器准备 2&#xff0c;主库配置 3&#xff0c;从库配置 4&#xff0c;测试 分库分表&#xff1a; 介绍 问题分析 中心思想…

【JavaEE初阶】线程 和 thread

本节⽬标 认识多线程 掌握多线程程序的编写 掌握多线程的状态 一. 认识线程&#xff08;Thread&#xff09; 1概念 1) 线程是什么 ⼀个线程就是⼀个 "执⾏流". 每个线程之间都可以按照顺序执⾏⾃⼰的代码. 多个线程之间 "同时" 执⾏着多份代码. 还…

设计模式期末复习

一、设计模式的概念以及分类 二、设计模式的主题和意图 设计模式的主题是关于软件设计中反复出现的问题以及相应的解决方案。这些主题是基于长期实践经验的总结&#xff0c;旨在提供一套可复用的设计思路和框架&#xff0c;以应对软件开发中的复杂性和变化性。 三、面向对象程…