[JAVA备忘录] Lambda 表达式简单介绍

news2024/12/23 9:59:14

目录

前言

函数式接口

Lambda 表达式使用实例

简单示例

1. 无参数,无返回值

2. 有参数,无返回值

3. 无参数,有返回值

4. 有参数,有返回值

解释:

集合框架

1.forEach:遍历集合

2.排序:对集合中的元素进行排序

3.映射:将集合中的每个元素转换成另一种形式

4.使用Lambda 表达式定制优先队列

实现函数式接口

         1.Comparator接口

2.Consumer接口

3.Function接口

结尾 


前言

Lambda 表达式 是 Java 8 引入的一项新特性,它使得 Java 编程语言更加简洁、灵活,特别是在处理函数式编程时。Lambda 表达式允许你以一种更加简洁的方式表示匿名函数(即没有名字的函数),它是 Java 对函数式编程思想的支持。    通俗地总结一下,它的作用就是让JAVA代码变得更加简洁.  本文是笔者对它的简单介绍,受制于笔者自身学识的不足,也许有不充分或者错误的地方,在此先说一声抱歉.笔者会经常审阅自己的博客,尽力确保不会有错误.

以下是它的基础语法:

基本语法: (parameters) -> expression 或 (parameters) ->{ statements; }
1. paramaters :类似方法中的形参列表,这里的参数是函数式接口里的参数。这里的参数类型可以明确的声明 ,也可不声明而由JVM 隐含的推断。另外当只有一个推断类型时可以省略掉圆括号。
2. -> :可理解为 被用于 的意思
3. 方法体 :可以是表达式也可以代码块,是 函数式接口 里方法的实现。代码块可返回一个值或者什么都不反回,这里的代码块块等同于方法的方法体。如果是表达式,也可以返回一个值或者什么都不反回。

函数式接口

首先科普一下什么是函数式接口

1. 如果一个接口只有一个抽象方法,那么该接口就是一个函数式接口
2. 如果我们在某个接口上声明了 @FunctionalInterface 注解,那么编译器就会按照函数式接口的定义来要求该接 口,这样如果有两个抽象方法,程序编译就会报错的。所以,从某种意义上来说,只要你保证你的接口中只 有一个抽象方法,你可以不加这个注解。加上就会自动进行检测的。
@FunctionalInterface
interface Example {

    void test();
}

Lambda 表达式使用实例

简单示例

1. 无参数,无返回值

  如果没有参数, 括号里面也就没有值

@FunctionalInterface
interface NoArgNoReturn {
    void doSomething();
}

public class Main {
    public static void main(String[] args) {
        // Lambda 表达式实现接口
        NoArgNoReturn action = () -> System.out.println("无参数,无返回值的方法执行");
        
        // 调用接口方法
        action.doSomething();
    }
}

2. 有参数,无返回值

   有参数,所以括号里面要放置我们的参数

@FunctionalInterface
interface WithArgNoReturn {
    void printMessage(String message);
}

public class Main {
    public static void main(String[] args) {
        // Lambda 表达式实现接口
        WithArgNoReturn action = (message) -> System.out.println("Message: " + message);
        
        // 调用接口方法
        action.printMessage("Hello, Lambda!");
    }
}

3. 无参数,有返回值

 和上面的示例类似

@FunctionalInterface
interface NoArgWithReturn {
    int getNumber();
}

public class Main {
    public static void main(String[] args) {
        // Lambda 表达式实现接口
        NoArgWithReturn action = () -> 42;  // 返回固定的数字

        // 调用接口方法并打印返回值
        System.out.println("The number is: " + action.getNumber());
    }
}

4. 有参数,有返回值

  (括号里面是参数 a,b), 然后我们返回 a+b的值

@FunctionalInterface
interface WithArgsWithReturn {
    int sum(int a, int b);
}

public class Main {
    public static void main(String[] args) {
        // Lambda 表达式实现接口
        WithArgsWithReturn action = (a, b) -> a + b;  // 返回两个数的和

        // 调用接口方法并打印返回值
        System.out.println("The sum is: " + action.sum(10, 20));
    }
}

这么做简化在哪里呢?请看如下例子

import java.util.*;

@FunctionalInterface
interface Example {

    void test();
}
public class Main {
    public static void main(String[] args) {


      Example example = new Example() {
          @Override
          public void test() {
              System.out.println("这是一个示例");
          }
      };

        example.test();
    }
}

我们这里定义了一个接口 Example,然后在 main 方法中创建了一个匿名内部类实现了 Example 接口。这个匿名类的实现是通过 new Example() {} 来完成的。 所以对比能发现,使用Lambda确实可以简化代码.

解释:

匿名内部类(Anonymous Inner Class)是一个没有名字的类,通常在实例化时使用。它是类的一个局部实现,可以用来简化代码,尤其在只需要某个接口的一个临时实现时。

集合框架

1.forEach:遍历集合

List<String> list = Arrays.asList("apple", "banana", "cherry");
list.forEach(item -> System.out.println(item));


2.排序:对集合中的元素进行排序

List<Integer> numbers = Arrays.asList(5, 3, 1, 4, 2);
numbers.sort((a, b) -> a - b);  // 使用 Lambda 表达式进行升序排序
numbers.forEach(System.out::println);  // 输出: 1, 2, 3, 4, 5

3.映射:将集合中的每个元素转换成另一种形式
 

List<String> strings = Arrays.asList("apple", "banana", "cherry");
strings.stream()
       .map(String::toUpperCase)  // 将字符串转为大写
       .forEach(System.out::println);

4.使用Lambda 表达式定制优先队列

我们在使用PriorityQueue时,通常需要定义这是大根堆还是小根堆,我们可以使用Lambda表达式来简化这个过程

PriorityQueue<Integer> priorityQueue = new PriorityQueue<>((o1, o2) -> o1-o2);


PriorityQueue<Integer> priorityQueue1 = new PriorityQueue<>(new Comparator<Integer>() 
{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
});
顺便提一嘴,这个操作为什么list不行呢?因为根据两者的源代码来看

PriorityQueue 实现了比较接口,它能够根据你提供的比较规则(Comparator)来排序元素,或者通过元素自身的自然顺序(如果元素实现了 Comparable 接口)来排序。因此,它支持自动排序。

    public PriorityQueue(Comparator<? super E> comparator) {
        this(DEFAULT_INITIAL_CAPACITY, comparator);
    }

List 不直接实现比较接口,它是一个普通的集合类,维护元素的插入顺序。要对 List 中的元素进行排序,必须显式地调用排序方法(比如 list.sort()),并提供一个 Comparator 或让元素实现 Comparable 接口。

public interface List<E> extends Collection<E>

笔者这里也是随意的举几个例子,读者们明白意思就好.

实现函数式接口

Lambda 实现函数式接口也是它的重要功能,笔者接下来举几个例子给读者看看

1.Comparator接口

如果正常地使用该接口,应该是这样的

import java.util.*;

class Person {
    String name;
    int age;

    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }

    @Override
    public String toString() {
        return name + ": " + age;
    }
}

public class Main {
    public static void main(String[] args) {
        List<Person> people = new ArrayList<>();
        people.add(new Person("Alice", 30));
        people.add(new Person("Bob", 25));
        people.add(new Person("Charlie", 35));

        // 使用自定义 Comparator 按照年龄排序
        people.sort(new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.age - o2.age;  // 按照年龄升序排序
            }
        });

        // 输出排序后的列表
        for (Person person : people) {
            System.out.println(person);
        }
    }
}

如果使用Lambda 表达式,可以简化为

import java.util.*;

public class Main {
    public static void main(String[] args) {
        List<Person> people = new ArrayList<>();
        people.add(new Person("Alice", 30));
        people.add(new Person("Bob", 25));
        people.add(new Person("Charlie", 35));

        // 使用 Lambda 表达式按年龄排序
        people.sort((o1, o2) -> o1.age - o2.age);

        // 输出排序后的列表
        for (Person person : people) {
            System.out.println(person);
        }
    }
}

小科普:为什么它是函数式接口

我们透过Comparator接口的源码可以看到

 boolean equals(Object obj);

 他其实还有这么方法,那么这是为什么呢?

答:  这是从 Object 类继承的,不属于接口本身定义的抽象方法。

根据 Java 的定义,函数式接口的判断依据是其抽象方法的数量,而不是它是否包含其他默认方法或静态方法。

  1. 继承自 Object 的方法不计入抽象方法
    equals() 是所有类(包括接口)的通用方法,它属于 Object 类,不是 Comparator 定义的抽象方法。

  2. 默认方法和静态方法不影响函数式接口的定义
    Java 8 引入默认方法和静态方法后,它们提供了更多的工具和扩展性,但这些都不影响抽象方法的唯一性。

因此,Comparator 只有一个抽象方法 compare(T o1, T o2),符合函数式接口的定义。

2.Consumer接口

以下是我的例子:

  List<String> list1 = new ArrayList<>();
       list1.add("niko");
       list1.add("bit");
       list1.add("ropz");
       list1.add("faker");
       list1.add("lwx");
       list1.forEach(new Consumer<String>() {
           @Override
           public void accept(String s) {
               System.out.println(s);
           }
       });
        list.forEach((s -> System.out.println(s)));

3.Function接口

 Function<Integer,Integer> function = x-> x *5;
        System.out.println(function.apply(2));
 Function<Integer,Integer> function = new Function<Integer, Integer>() {
            @Override
            public Integer apply(Integer integer) {
                return integer*5;
            }
        };
        System.out.println(function.apply(2));

结尾 

我不敢恬不知耻地说这是一遍综合介绍Lambda 表达式的博客,因为受制于自身知识有限,我没有完整地拿出很多例子.但我可以说它初步介绍了Lambda 表达式,希望能给阅读到的小白一些总结性的思考.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2264176.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue2五、商品分类:My-Tag表头组件,My-Table整个组件

准备&#xff1a; 安包 npm less less-loader。拆分&#xff1a;一共分成两个组件部分&#xff1a; 1&#xff1a;My-Tag 标签一个组件。2&#xff1a;My-Table 整体一个组件&#xff08;表头不固定&#xff0c;内容不固定&#xff08;插槽&#xff09;&#xff09; 一&…

mysql运维篇笔记——日志,主从复制,分库分表,读写分离

目录 日志 错误日志 二进制日志 查询日志 慢查询日志 主从复制 概念&#xff1a; 优点&#xff1a; 原理&#xff1a; 搭建&#xff1a; 1&#xff0c;服务器准备 2&#xff0c;主库配置 3&#xff0c;从库配置 4&#xff0c;测试 分库分表&#xff1a; 介绍 问题分析 中心思想…

【JavaEE初阶】线程 和 thread

本节⽬标 认识多线程 掌握多线程程序的编写 掌握多线程的状态 一. 认识线程&#xff08;Thread&#xff09; 1概念 1) 线程是什么 ⼀个线程就是⼀个 "执⾏流". 每个线程之间都可以按照顺序执⾏⾃⼰的代码. 多个线程之间 "同时" 执⾏着多份代码. 还…

设计模式期末复习

一、设计模式的概念以及分类 二、设计模式的主题和意图 设计模式的主题是关于软件设计中反复出现的问题以及相应的解决方案。这些主题是基于长期实践经验的总结&#xff0c;旨在提供一套可复用的设计思路和框架&#xff0c;以应对软件开发中的复杂性和变化性。 三、面向对象程…

【小白51单片机专用教程】protues仿真AT89C51入门

课程特点 无需开发板0基础教学软件硬件双修辅助入门 本课程面对纯小白&#xff0c;因此会对各个新出现的知识点在实例基础上进行详细讲解&#xff0c;有相关知识的可以直接跳过。课程涉及protues基本操作、原理图设计、数电模电、kell使用、C语言基本内容&#xff0c;所有涉及…

MFC用List Control 和Picture控件实现界面切换效果

添加List Control 和Picture控件 添加 3个子窗体 把子窗体边框设置为None, 样式设为Child 声明 CListCtrl m_listPageForm;void ShowForm(int nIndex);void CreatFormList();void CMFCApplication3Dlg::DoDataExchange(CDataExchange* pDX) {CDialogEx::DoDataExchange(pDX);DD…

Linux高并发服务器开发 第五天(压缩解压缩/vim编辑器)

目录 1.压缩和解压缩 1.1压缩 1.2解压缩 2.vim编辑器 2.1vim的3种工作模式 2.2切换编辑模式 2.3保存和退出 2.4光标移动 1.压缩和解压缩 - Linux 操作系统&#xff0c;默认支持的 压缩格式&#xff1a;gzip、bzip2。 默认&#xff0c;这两种压缩格式&#xff0c;只能…

接口测试Day-02-安装postman项目推送Gitee仓库

postman安装 下载 Postman&#xff08;已提供安装包&#xff0c;此步可以跳过&#xff09; https://www.postman.com/downloads/安装 Postman 安装Postman插件newman 要想给 postman 安装 newman 插件&#xff0c;必须 先 安装 node.js。 这是前提&#xff01; 安装node.js 可能…

虚拟地址空间 -- 虚拟地址,虚拟内存管理

1. C/C语言的内存空间分布 用下列代码来观察各种区域的地址&#xff1a; #include <stdio.h> #include <unistd.h> #include <stdlib.h>int g_unval; int g_val 100;int main(int argc, char *argv[], char *env[]) {const char *str "helloworld&qu…

【数字化】华为数字化转型架构蓝图-2

目录 1、客户联结的架构思路 1.1 ROADS体验设计 1.2 具体应用场景 1.3 统一的数据底座 1.4 案例与成效 2、一线作战平台的架构思路 2.1 核心要素 2.2 关键功能 2.3 实施路径 2.4 案例与成效 3、能力数字化的架构思路 3.1 能力数字化的核心目标 3.2 能力数字化的实…

【优选算法】—移动零(双指针算法)

云边有个稻草人-CSDN博客 想当一名牛的程序员怎么能少的了练习算法呢&#xff1f;&#xff01; 今天就立即开启一个新专栏&#xff0c;专干算法&#xff0c;提高算法能力&#xff08;废柴的我也在准备蓝桥杯哈哈&#xff09;—— 目录 1.【 283. 移动零 - 力扣&#xff08;Lee…

AI的进阶之路:从机器学习到深度学习的演变(三)

&#xff08;承接上集&#xff1a;AI的进阶之路&#xff1a;从机器学习到深度学习的演变&#xff08;二&#xff09;&#xff09; 四、深度学习&#xff08;DL&#xff09;&#xff1a;机器学习的革命性突破 深度学习&#xff08;DL&#xff09;作为机器学习的一个重要分支&am…

Python自动化测试:线上流量回放

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 在自动化测试中&#xff0c;线上流量回放是一项关键技术&#xff0c;可以模拟真实用户的请求并重现线上场景&#xff0c;验证系统的性能和稳定性。本文将介绍Pytho…

初始C语言3

目录 9. 操作符 9.1 算术操作符 9.2 移位操作符 9.3 位操作符 9.4 赋值操作符 9.5 单目操作符 9.6 关系操作符 9.7 逻辑操作符 9.8 条件操作符 9.9 逗号表达式 下标引用、函数调用和结构成员 10. 常见关键字 10.1 typedef 10.2 static 10.2.1 修饰局部变量 10.…

【Rust自学】4.5. 切片(Slice)

4.5.0. 写在正文之前 这是第四章的最后一篇文章了&#xff0c;在这里也顺便对这章做一个总结&#xff1a; 所有权、借用和切片的概念确保 Rust 程序在编译时的内存安全。 Rust语言让程序员能够以与其他系统编程语言相同的方式控制内存使用情况&#xff0c;但是当数据所有者超…

VPN技术-GRE隧道的配置

GRE隧道的配置 1&#xff0c; 在AR1上配置DHCP接口地址池&#xff0c;AR3上配置DHCP全局地址池 2&#xff0c; PC1获取的IP地址为10.10.10.253&#xff0c;PC2获取的IP地址为10.10.30.253 3&#xff0c;通过ip route-static将目的地址为10.10.30.253的流量引入到Tunnel #配…

碰撞检测算法之闵可夫斯基差集法(Minkowski Difference)

在游戏开发和机器人路径规划乃至于现在比较火的自动驾驶中&#xff0c;我们常常需要确定两个物体是否发生碰撞&#xff0c;有一种通过闵可夫斯基差集法求是否相交的算法&#xff0c;下面将介绍一下 闵可夫斯基差集法的优势 闵可夫斯基差集法优势&#xff1a; 可以处理复杂的…

Python OCR 文字识别

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

【系统】Windows11更新解决办法,一键暂停

最近的windows更新整的我是措不及防&#xff0c;干啥都要关注一下更新的问题&#xff0c;有的时候还关不掉&#xff0c;我的强迫症就来了&#xff0c;非得关了你不可&#xff01; 经过了九九八十一难的研究之后&#xff0c;终于找到了一个算是比较靠谱的暂停更新的方法&#x…

复合翼与倾转旋翼飞行器:设计与控制算法对比

一、引言 复合翼&#xff08;Compound Wing&#xff09;和倾转旋翼&#xff08;Tilt - Rotor&#xff09;飞行器在现代航空领域均占据独特地位&#xff0c;二者在设计和控制算法方面展现出显著差异。这些差异在飞行模式切换、推进系统设计、控制算法复杂度以及飞行器稳定性等多…