聊一聊 C#前台线程 如何阻塞程序退出

news2024/12/23 8:35:02

一:背景

1. 讲故事

这篇文章起源于我的 C#内功修炼训练营里的一位朋友提的问题:后台线程的内部是如何运转的 ? ,犹记得C# Via CLR这本书中 Jeffery 就聊到了他曾经给别人解决一个程序无法退出的bug,最后发现是有一个 Backgrond=false 的线程导致的。恰巧在我分析的350+dump中,也还真遇到了。有了这些铺垫,我觉得有必要简单的聊一聊。

二:后台线程的底层逻辑

1. 测试代码

为了方便讲解,先上一段代码,参考如下:


    static void Main(string[] args)
    {
        var thread = new Thread(() =>
        {
            while (true)
            {
                Console.WriteLine(DateTime.Now);
            }
        });

        thread.IsBackground = false;
        thread.Start();
    }

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

按照我们朴素的想法,主线程退出,程序自然就terminal,但这个程序并没有退出?原因就在于设置了 thread.IsBackground = false; 导致的,当然要想程序正常退出改为 ``thread.IsBackground = true;` 即可,接下来我们洞察下 IsBackground 有何魔力导致程序无法退出。

2. 程序为什么无法退出

要想知道这个答案,可以用 windbg 附加一下看看主线程此时正在做什么? 参考如下:


0:000> k
 # Child-SP          RetAddr               Call Site
00 0000003f`7d59e498 00007ffd`cd8d0590     ntdll!NtWaitForMultipleObjects+0x14
01 0000003f`7d59e4a0 00007ffd`8f842dd4     KERNELBASE!WaitForMultipleObjectsEx+0xf0
02 (Inline Function) --------`--------     coreclr!Thread::DoAppropriateAptStateWait+0x4a [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 3333] 
03 0000003f`7d59e790 00007ffd`8f842c25     coreclr!Thread::DoAppropriateWaitWorker+0x170 [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 3467] 
04 0000003f`7d59e850 00007ffd`8f99498e     coreclr!Thread::DoAppropriateWait+0x85 [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 3182] 
05 (Inline Function) --------`--------     coreclr!CLREventBase::WaitEx+0x26 [D:\a\_work\1\s\src\coreclr\vm\synch.cpp @ 459] 
06 (Inline Function) --------`--------     coreclr!CLREventBase::Wait+0x26 [D:\a\_work\1\s\src\coreclr\vm\synch.cpp @ 412] 
07 0000003f`7d59e8d0 00007ffd`8f94c185     coreclr!CLREventWaitWithTry+0x9a [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 5676] 
08 0000003f`7d59e980 00007ffd`8f8a062b     coreclr!ThreadStore::WaitForOtherThreads+0xabafd [D:\a\_work\1\s\src\coreclr\vm\threads.cpp @ 5715] 
09 0000003f`7d59e9b0 00007ffd`8f83eaad     coreclr!RunMainPost+0x5f [D:\a\_work\1\s\src\coreclr\vm\assembly.cpp @ 1407] 
0a 0000003f`7d59e9f0 00007ffd`8f83e0e7     coreclr!Assembly::ExecuteMainMethod+0x1f5 [D:\a\_work\1\s\src\coreclr\vm\assembly.cpp @ 1524] 
0b 0000003f`7d59ecc0 00007ffd`8f889778     coreclr!CorHost2::ExecuteAssembly+0x267 [D:\a\_work\1\s\src\coreclr\vm\corhost.cpp @ 349] 
...

从卦中数据可以看到,主线程正在调用 ThreadStore::WaitForOtherThreads 方法,貌似是在等待其他线程完成,那具体做了什么呢?这个需要在 coreclr 上寻找答案,删减后的代码如下:


    void ThreadStore::WaitForOtherThreads()
    {
        if (!OtherThreadsComplete())
        {
            TSLockHolder.Release();

            pCurThread->SetThreadState(Thread::TS_ReportDead);

            DWORD ret = WAIT_OBJECT_0;
            while (CLREventWaitWithTry(&m_TerminationEvent, INFINITE, TRUE, &ret))
            {
            }
        }
    }

    BOOL OtherThreadsComplete()
    {
        return (m_ThreadCount - m_UnstartedThreadCount - m_DeadThreadCount
                - Thread::m_ActiveDetachCount + m_PendingThreadCount
                == m_BackgroundThreadCount);
    }

从卦中看逻辑还是非常简单的,就是因为 m_ThreadCount - m_UnstartedThreadCount - m_DeadThreadCount- Thread::m_ActiveDetachCount + m_PendingThreadCount 减完之后和 m_BackgroundThreadCount 对不上,最后在 m_TerminationEvent 事件上等待唤醒。

这里稍微提一下,这几个值可以通过 !t 显示出来,参考如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有一个 Thread::m_ActiveDetachCount 计数值,这个值统计的是那种被coreclr从 ThreadStore 中移除尚未被 delete 的线程对象。结合 !t 的输出,很显然 OtherThreadsComplete()3=2 显然返回 false。因为有 1 个 background 的存在。

3. IsBackground=true 能破局吗

症结我们也找到了,只要m_TerminationEvent事件能够被唤醒,链路就会被再次打通,让程序安全退出。接下来我们研究下 IsBackground=true 在底层会做什么?简化后的C++代码如下:


    void Thread::SetBackground(BOOL isBack)
    {
        if (isBack)
        {
            if (!IsBackground())
            {
                SetThreadState(TS_Background);

                if (!IsUnstarted())
                    ThreadStore::s_pThreadStore->m_BackgroundThreadCount++;

                ThreadStore::CheckForEEShutdown();
            }
        }
    }

    void ThreadStore::CheckForEEShutdown()
    {
        if (g_fWeControlLifetime &&
            s_pThreadStore->OtherThreadsComplete())
        {
            BOOL bRet;
            bRet = s_pThreadStore->m_TerminationEvent.Set();
            _ASSERTE(bRet);
        }
    }

哈哈,卦中的化煞方法真的妙不可言,做了如下两个步骤:

  1. 做了 m_BackgroundThreadCount++,这样 OtherThreadsComplete() 的值就对上了。
  2. 使用 m_TerminationEvent.Set 做了事件唤醒,这样主线程就可以从 WaitForOtherThreads() 方法中逃出生天。

如果有些朋友没搞明白,我再画一张简图吧:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4. 判断线程的前后状态

这是最后一个要聊的话题,要想知道线程的前后状态,这个需要在 coreclr 源码中寻找答案,参考代码如下:


    void SetThreadState(ThreadState ts)
    {
        InterlockedOr((LONG*)&m_State, ts);
    }

    enum ThreadState
    {
        TS_Background = 0x00000200,    // Thread is a background thread
    }

从代码中可以看到,只要判断 ThreadState 中有没有 0x200 的标记即可,接下来用 !t 观察线程状态。


0:000> !t
ThreadCount:      4
UnstartedThread:  0
BackgroundThread: 3
PendingThread:    0
DeadThread:       0
Hosted Runtime:   no
                                                                                                            Lock  
 DBG   ID     OSID ThreadOBJ           State GC Mode     GC Alloc Context                  Domain           Count Apt Exception
   0    1      918 000001FA530317B0  203a220 Preemptive  000001FA574096F8:000001FA5740A5C8 000001fa530273e0 -00001 MTA 
   6    2     37c8 000001FA53009B70    21220 Preemptive  0000000000000000:0000000000000000 000001fa530273e0 -00001 Ukn (Finalizer) 
   7    3     2c7c 000001FA5307F700    2b220 Preemptive  0000000000000000:0000000000000000 000001fa530273e0 -00001 MTA 
   8    4     3bd4 0000023AE951DFD0    2b020 Preemptive  000001FA57563A08:000001FA57565010 000001fa530273e0 -00001 MTA 

从卦中可以轻松的看到 DBG=8 的线程状态是 2b020,自然就是前台线程咯。

三:总结

现在我们知道了前后台线程本质上是 coreclr 弄出来的概念,并非系统线程素有之物。还是那句话,知识不重要,重要的是会使用合适的工具和保有的探索心,这也是在训练营里重度强调的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2264140.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM性能优化一:初识内存泄露-内存溢出-垃圾回收

本文主要是让你充分的认识到什么叫做内存泄露,什么叫做内存溢出,别再傻傻分不清了,别再动不动的升级服务器的内存了。 文章目录 1.基本概念1.1.内存泄露1.2.内存溢出1.3.垃圾回收1.4.内存泄露-垃圾回收-内存溢出三者的关系关系 2.代码示例2.…

为什么使用环形队列

1.看以下两种情况。第一种不会出现问题,当主流程读取次数比较慢时,数据会被覆盖。 2.扩大空间。不可取。 3.什么是队列

【WRF教程第3.6期】预处理系统 WPS 详解:以4.5版本为例

预处理系统 WPS 详解:以4.5版本为例 Geogrid/Metgrid 插值选项详解1. 插值方法的工作机制2. 插值方法的详细说明2.1 四点双线性插值(four_pt)2.2 十六点重叠抛物线插值(sixteen_pt)2.3 简单四点平均插值(av…

批量提取zotero的论文构建知识库做问答的大模型(可选)——含转存PDF-分割统计PDF等

文章目录 提取zotero的PDF上传到AI平台保留文件名代码分成20个PDF视频讲解 提取zotero的PDF 右键查看目录 发现目录为 C:\Users\89735\Zotero\storage 写代码: 扫描路径‘C:\Users\89735\Zotero\storage’下面的所有PDF文件,全部复制一份汇总到"C:\Users\89735\Downl…

Java模拟Mqtt客户端连接Mqtt Broker

Java模拟Mqtt客户端基本流程 引入Paho MQTT客户端库 <dependency><groupId>org.eclipse.paho</groupId><artifactId>org.eclipse.paho.mqttv5.client</artifactId><version>1.2.5</version> </dependency>设置mqtt配置数据 …

boost asio 异步服务器

boost网络框架使用方法 boost绑定 首先介绍io_context&#xff0c;可以理解为这是操作系统和应用层数据交互的桥梁。有了它不必关注内核态的缓冲区&#xff0c;只需要关注自己定义在用户态的缓冲区&#xff0c;因为它会通过桥梁运输到用户态的缓冲区。 boost::asio::io_contex…

图解HTTP-HTTP协议

HTTP HTTP是一种不保存状态&#xff0c;即无状态的协议。HTTP协议自身不对请求和响应之间的通信进行保存。为了保存状态因此后面也有一些技术产生比如Cookies技术。 HTTP是通过URI定位网上的资源&#xff0c;理论上将URI可以访问互联网上的任意资源。 如果不是访问特定的资源…

【Go】-限流器的四种实现方法

目录 关于限流和限流器 固定窗口限流器 滑动窗口限流器 漏桶限流器 令牌桶限流器 总结 关于限流和限流器 限流&#xff08;Rate Limiting&#xff09;是一种控制资源使用率的机制&#xff0c;通常用于防止系统过载和滥用。 限流器&#xff08;Rate Limiter&#xff09;是…

CTF_1

CTF_Show 萌新赛 1.签到题 <?php if(isset($_GET[url])){system("curl https://".$_GET[url].".ctf.show"); }else{show_source(__FILE__); }?> 和 AI 一起分析 1.if(isset($_GET[url]))检查GET请求中是否存在名为url的参数。 curl 2.curl…

[文献阅读] Unsupervised Deep Embedding for Clustering Analysis (无监督的深度嵌入式聚类)

文章目录 Abstract:摘要聚类深度聚类 KL散度深度嵌入式聚类(DEC)KL散度聚类软分配&#xff08;soft assignment&#xff09;KL散度损失训练编码器的初始化聚类中心的初始化 实验评估总结 Abstract: This week I read Unsupervised Deep Embedding for Clustering Analysis .It…

记录:virt-manager配置Ubuntu arm虚拟机

virt-manager&#xff08;Virtual Machine Manager&#xff09;是一个图形用户界面应用程序&#xff0c;通过libvirt管理虚拟机&#xff08;即作为libvirt的图形前端&#xff09; 因为要在Linux arm环境做测试&#xff0c;记录下virt-manager配置arm虚拟机的过程 先在VMWare中…

使用C语言编写UDP循环接收并打印消息的程序

使用C语言编写UDP循环接收并打印消息的程序 前提条件程序概述伪代码C语言实现编译和运行C改进之自由设定端口注意事项在本文中,我们将展示如何使用C语言编写一个简单的UDP服务器程序,该程序将循环接收来自指定端口的UDP消息,并将接收到的消息打印到控制台。我们将使用POSIX套…

Spring Boot 教程之三十六:实现身份验证

如何在 Spring Boot 中实现简单的身份验证&#xff1f; 在本文中&#xff0c;我们将学习如何使用 Spring设置和配置基本身份验证。身份验证是任何类型的安全性中的主要步骤之一。Spring 提供依赖项&#xff0c;即Spring Security&#xff0c;可帮助在 API 上建立身份验证。有很…

什么样的LabVIEW控制算自动控制?

自动控制是指系统通过预先设计的算法和逻辑&#xff0c;在无人工干预的情况下对被控对象的状态进行实时监测、决策和调整&#xff0c;达到预期目标的过程。LabVIEW作为一种图形化编程工具&#xff0c;非常适合开发自动控制系统。那么&#xff0c;什么样的LabVIEW控制算作“自动…

GFPS扩展技术原理(七)-音频切换消息流

音频切换消息流 Seeker和Provider通过消息流来同步音频切换能力&#xff0c;触发连接做切换&#xff0c;获取或设置音频切换偏好&#xff0c;通知连接状态等等。为此专门定义了音频切换消息流Message Group 为0x07&#xff0c;Message codes如下&#xff1a; MAC of Audio s…

视频直播点播平台EasyDSS与无人机技术的森林防火融合应用

随着科技的飞速发展&#xff0c;无人机技术以其独特的优势在各个领域得到了广泛应用&#xff0c;特别是在森林防火这一关键领域&#xff0c;EasyDSS视频平台与无人机技术的融合应用更是为传统森林防火手段带来很大的变化。 一、无人机技术在森林防火中的优势 ‌1、快速响应与高…

机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1贪婪搜索算法原理 4.2最安全距离算法原理 4.3RPM 算法原理 4.4 RRT 算法原理 5.完整程序 1.程序功能描述 机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及R…

【论文笔记】Visual Alignment Pre-training for Sign Language Translation

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 基本信息 标题: Visual Alignment Pre-tra…

【附源码】Electron Windows桌面壁纸开发中的 CommonJS 和 ES Module 引入问题以及 Webpack 如何处理这种兼容

背景 在尝试让 ChatGPT 自动开发一个桌面壁纸更改的功能时&#xff0c;发现引入了一个 wallpaper 库&#xff0c;这个库的入口文件是 index.js&#xff0c;但是 package.json 文件下的 type:"module"&#xff0c;这样造成了无论你使用 import from 还是 require&…

Apache解析漏洞(apache_parsingCVE-2017-15715)

apache_parsing 到浏览器中访问网站 http://8.155.8.239:81/ 我们写一个木马 1.php.jpg 我们将写好的木马上传 会得到我们上传文件的路径 我们访问一下 发现上传成功 发现木马运行成功&#xff0c;接下来使用蚁剑连接我们的图片马 获取 shell 成功 CVE-2013-454 我们还是到…