机器学习04-为什么Relu函数

news2025/2/26 15:17:56

机器学习0-为什么Relu函数


文章目录

  • 机器学习0-为什么Relu函数
    • @[toc]
    • 1-手搓神经网络步骤总结
    • 2-为什么要用Relu函数
    • 3-进行L1正则化
      • 修改后的代码
      • 解释
    • 4-进行L2正则化
      • 解释
      • 注意事项
    • 5-Relu激活函数多有夸张
      • 1-细数Relu函数的5宗罪
      • 2-Relu函数5宗罪详述
    • 6-那为什么要用这个Relu函数
    • 7-文本分类情感分析任务激活
      • 特征之间的关系
      • 常用的激活函数
      • 总结
    • 8-专业词汇解释

1-手搓神经网络步骤总结

  • 1)基于【预测值和真实值】最小的差别(使用最小二乘法)计算误差值
  • 2)如何求解【最小二乘法】的方法,分别针对w和b进行求导,计算方法叫做【梯度下降求解】->引入【迭代步数】+【学习率】的概念
  • 3)为了解决多个神经元的线性组合还是直线的问题进行非线性变换(激活函数)->引入ReLu等激活函数,各取所长
  • 4)OK,至此已经完美的解决了【线性模型】+【误差计算】+【梯度求解】+【非线性变化】的问题,直接可以得到我们的模型了
  • 5)但是这样的模型太过完美,导致计算的数据可能针对【训练和验证数据】太过完美,针对新数据预测不准->引入【L1/L2正则】

2-为什么要用Relu函数

为什么一个小学生都会的函数,可以解决神经网络中的梯度问题?

1)神经网络是基于线性组合进行变换了,就会导致所有的线性函数不论经过多少次变换都还是一个线性函数
2)OK,现在引入【非线性环变换-Relu函数】那么怎么解释这几个问题?

  • 1)多个Relu函数线性变换到底是个什么鬼?->可以用python进行绘制【曲线】->OK,y值经过Relu(y)后再线性组合可以表示非线性问题
  • 2)那为什么要用这个Relu函数?貌似我随手写一个函数,sin、cos、tan、cot甚至我手写一个只要不是直线的方程都可以实现【非线性变换】->答案:【生物学启示】+【计算效率】

诚实一点:别说太多玄乎的东西,就两个核心点【老板亲儿子->神经网络的生物学启示】+【计算时偷懒->把负数置为0,这样就不用计算负数部分的运算(计算效率)】

其他【稀疏性】+【缓解梯度消失问题】->先说【缓解梯度消失问题】只要斜率为0大家都会梯度消失,sigmoid或tanh这样的饱和非线性函数斜率会变为0,Relu函数在小于0时,直接就全变为0(直接躺平,大家都梯度消失了,所以这个接口太牵强了)

再说【稀疏性】所谓的【稀疏性】说人话就是让部分参数不参与计算(不激活),实现这个方式也太简单了,我可以选择跳过随机参数或者其他的方式都行,所以这个接口也太牵强

  • 3)OK,如果是【老板的儿子】当然是选择接纳他啦,还能怎么办!那Relu函数的主要负责什么场景,这样我们遇到这些场景,赶紧找Relu函数去大展拳脚,秀一波肌肉?->【线性特征场景(一半是线性)】+【长文本的稀疏计算(数据置0保留核心)】+【深度神经网络(数据置0计算简单)】
  • ReLU有一半是线性方程,可以很好的学习到线性特征;

  • 因为简单在深度神经网络的计算中可以有效计算;

  • 文本分类和情感分析等任务中只有核心的要点关键字,使用RelU可以剔除没有梯度变化的数据

  • 4)OK,【老板的儿子】再有本事也得找帮手进行互补,有没有其他的激活函数也可以解决这些事情?-> 四大金刚:Sigmoid、ReLU、Tanh 和 Leaky ReLU

其他激活函的场景:https://mp.weixin.qq.com/s?__biz=Mzk0NDM4OTYyOQ==&mid=2247484448&idx=1&sn=f5ae1d222067f7125cba799742ee17d3&chksm=c32428b2f453a1a43a99d88b060f1366dde591afa1ed78825a978e83a4bb3fe1eac922ddd217&token=142243382&lang=zh_CN#rd


3-进行L1正则化

在你的代码中,你已经实现了基本的梯度下降算法来拟合一个简单的线性模型,并使用Sigmoid函数作为激活函数。为了防止过拟合,你可以通过添加L1正则化来限制模型的复杂度。L1正则化通过在损失函数中添加模型参数的绝对值之和来实现。

下面是如何在你的代码中添加L1正则化的步骤:

  1. 定义正则化项:在损失函数中添加L1正则化项。
  2. 修改梯度计算:在计算梯度时,考虑正则化项的影响。

修改后的代码

import numpy as np

# 输入数据
x_data = np.array([0, 1, 2, 3, 4])
y_data = np.array([0, 2, 4, 6, 8])

# 初始化参数
m = 0
b = 0

# 超参数
learning_rate = 0.01
epochs = 1000
lambda_l1 = 0.01  # L1正则化系数

# Sigmoid激活函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Sigmoid的导数
def sigmoid_derivative(x):
    return sigmoid(x) * (1 - sigmoid(x))

def compute_gradients(m, b, x, y, lambda_l1):
    N = len(x)
    z = m * x + b
    y_pred = sigmoid(z)  # 使用sigmoid作为激活函数
    error = y_pred - y
    dL_dy_pred = error
    dL_dz = dL_dy_pred * sigmoid_derivative(z)  # 使用sigmoid的导数
    
    # 计算L1正则化的梯度
    dm_l1 = lambda_l1 * np.sign(m)
    db_l1 = lambda_l1 * np.sign(b)
    
    # 计算总的梯度
    dm = (2/N) * np.sum(dL_dz * x) + dm_l1
    db = (2/N) * np.sum(dL_dz) + db_l1
    
    return dm, db

for epoch in range(epochs):
    dm, db = compute_gradients(m, b, x_data, y_data, lambda_l1)
    m = m - learning_rate * dm
    b = b - learning_rate * db
    if epoch % 100 == 0:
        z = m * x_data + b
        y_pred = sigmoid(z)  # 使用sigmoid作为激活函数进行预测
        loss = np.mean((y_pred - y_data)**2) + lambda_l1 * (abs(m) + abs(b))  # 添加L1正则化项
        print(f"Epoch {epoch}: m = {m}, b = {b}, loss = {loss}")

print(f"Final equation: y = {m} * x + {b}")

解释

  1. 正则化系数 lambda_l1:这是一个超参数,控制L1正则化的强度。较大的值会导致模型参数更接近于零,从而减少模型的复杂度。

  2. 正则化项的梯度:在 compute_gradients 函数中,我们添加了L1正则化的梯度 dm_l1db_l1。L1正则化的梯度是参数的符号函数 np.sign(m)np.sign(b) 乘以正则化系数 lambda_l1

  3. 损失函数:在计算损失时,我们添加了L1正则化项 lambda_l1 * (abs(m) + abs(b)),这会使得模型参数的绝对值之和最小化。

通过这种方式,L1正则化可以帮助模型避免过拟合,尤其是在数据量较小或特征较多的情况下。


4-进行L2正则化

你的代码尝试使用梯度下降算法通过线性回归拟合线性数据,并且使用了 Sigmoid 激活函数。然而,对于线性数据,使用 Sigmoid 激活函数并不是最佳选择,因为它会将输出压缩到 0 和 1 之间,这可能导致损失函数值很高且收敛缓慢。

另外,你的代码中没有加入 L2 正则化来避免过拟合。为了在代码中添加 L2 正则化,我们需要在损失函数中加入一个正则化项,并在计算梯度时考虑这个项。L2 正则化项通常表示为参数的平方和乘以一个正则化系数 λ。

以下是修改后的代码,加入了 L2 正则化:

import numpy as np

# 输入数据
x_data = np.array([0, 1, 2, 3, 4])
y_data = np.array([0, 2, 4, 6, 8])

# 初始化参数
m = 0
b = 0

# 超参数
learning_rate = 0.01
epochs = 1000
lambda_reg = 0.1  # 正则化系数

# Sigmoid激活函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Sigmoid的导数
def sigmoid_derivative(x):
    return sigmoid(x) * (1 - sigmoid(x))

def compute_gradients(m, b, x, y, lambda_reg):
    N = len(x)
    z = m * x + b
    y_pred = sigmoid(z)  # 使用sigmoid作为激活函数
    error = y_pred - y
    dL_dy_pred = error
    dL_dz = dL_dy_pred * sigmoid_derivative(z)  # 使用sigmoid的导数
    dm = (2/N) * np.sum(dL_dz * x) + (2 * lambda_reg * m / N)  # 添加L2正则化项
    db = (2/N) * np.sum(dL_dz) + (2 * lambda_reg * b / N)  # 添加L2正则化项
    return dm, db

for epoch in range(epochs):
    dm, db = compute_gradients(m, b, x_data, y_data, lambda_reg)
    m = m - learning_rate * dm
    b = b - learning_rate * db
    if epoch % 100 == 0:
        z = m * x_data + b
        y_pred = sigmoid(z)  # 使用sigmoid作为激活函数进行预测
        loss = np.mean((y_pred - y_data)**2) + (lambda_reg * (m**2 + b**2) / N)  # 添加L2正则化项
        print(f"Epoch {epoch}: m = {m}, b = {b}, loss = {loss}")

print(f"Final equation: y = {m} * x + {b}")

解释

  1. L2 正则化项:在 compute_gradients 函数中,我们添加了 L2 正则化项 (2 * lambda_reg * m / N)(2 * lambda_reg * b / N),分别对 mb 的梯度进行正则化。
  2. 损失函数:在计算损失函数时,我们也添加了 L2 正则化项 (lambda_reg * (m**2 + b**2) / N)

注意事项

  • 正则化系数 λlambda_reg 是一个超参数,需要通过交叉验证等方法来选择合适的值。
  • 数据线性:对于线性数据,使用线性激活函数(如直接使用 z 而不是 sigmoid(z))可能会更合适,这样可以避免 Sigmoid 的压缩效应。
  • 学习率:学习率 learning_rate 也需要适当调整,以确保模型能够收敛。

希望这些修改能帮助你更好地理解和应用 L2 正则化。


5-Relu激活函数多有夸张

Relu激活函数是一个初中生都可以随手写出来的一个函数,看一下想法有多夸张【人有多么懒,地有多大产】

  • 1)直接把带负值公式全部删除了(啊啊啊啊啊啊啊。。。。)

  • 2)直接把负值参数全部抹掉了是个什么概念,我类比一下:数学老师让我算题

    -2x+3y=5
    4x+7y=8
    3x+8y=15
    
  • 3)我感觉负数不好看,直接把第一个公式删掉了,按照下面两个公式进行计算了。(啊啊啊啊啊啊啊。。。。)

  • 4)恐怖的不是我把这个公式删掉了,恐怖的是整个AI圈都在用这个方法进行求解(啊啊啊啊啊啊啊。。。。)

1-细数Relu函数的5宗罪

  • 1-引入非线性(解决线性组合的缺陷)

  • 2-计算效率高(强制把梯度设置为1和0-为0时把数据丢掉了)

  • 3-缓解梯度消失问题(强制把梯度设置为1和0)

  • 4-稀疏激活(强制把梯度设置为1和0)

  • 5-死亡ReLU问题(强制把梯度设置为1和0)


2-Relu函数5宗罪详述

引入非线性:在神经网络中,如果没有激活函数,多层神经网络等价于单层神经网络,因为线性变换的组合仍然是线性的。激活函数引入了非线性,使得神经网络能够学习和表示复杂的函数关系。

计算效率高:ReLU函数的计算非常简单,只需要进行一次阈值操作,即判断输入是否大于0。这在计算上比其他激活函数(如sigmoid或tanh)要高效得多,因为它们涉及指数运算。

3)缓解梯度消失问题:在深度网络中,使用sigmoid或tanh等饱和激活函数时,容易出现梯度消失问题,即在反向传播过程中,梯度值会随着层的加深而指数级衰减,导致网络训练困难。ReLU在x>0区域的梯度恒为1,因此可以缓解这个问题,使得深层网络更容易训练。

稀疏激活:ReLU函数会将所有负输入置零,这会导致一部分神经元在某些情况下不被激活,从而形成稀疏的激活模式。这种稀疏性有助于减少计算量,并可能有助于特征学习。

5)死亡ReLU问题:尽管ReLU有很多优点,但也存在一些问题。其中一个问题是“死亡ReLU”现象,即当神经元的输入长期为负时,其梯度为零,权重不再更新,神经元变得无效。为了解决这个问题,一些变体如Leaky ReLU、PReLU和ELU被提出,它们在x<0时引入一个小的斜率,以避免神经元死亡。


6-那为什么要用这个Relu函数

貌似我随手写一个函数,sin、 cos、 tan、 cot甚至我手写一个只要不是直线的方程都可以实现【非线性变换】

确实,许多函数都可以实现非线性变换,包括sincostancot等。然而,ReLU(Rectified Linear Unit)函数在深度学习中被广泛使用,主要基于以下几个原因:

  1. 计算效率:ReLU函数非常简单,其数学表达式为f(x) = max(0, x)。这意味着在计算时只需要进行一个简单的比较和取最大值操作,这比其他复杂的非线性函数(如sincos等)要快得多。

  2. 稀疏性:ReLU函数会将所有负值置为0,这有助于引入稀疏性。在神经网络中,稀疏性通常被认为是一种有益的特性,因为它可以帮助模型更好地泛化,并减少过拟合的风险。同时,这也使得网络更加高效,因为许多神经元在某一时刻可能处于非激活状态(输出为0),从而节省了计算资源。

  3. 缓解梯度消失问题:在深度神经网络中,当使用像sigmoidtanh这样的饱和非线性函数时,梯度在反向传播过程中可能会逐渐消失,导致网络难以训练。而ReLU函数在正数区域内的导数为1,这意味着梯度可以顺畅地通过该层,从而缓解了梯度消失的问题。

  4. 生物学启示:ReLU函数在某种程度上模拟了生物神经元的激活方式。在生物学中,神经元通常只在输入信号达到一定阈值时才会被激活。ReLU函数通过设定一个阈值(在本例中为0),实现了类似的行为。

当然,ReLU函数也有其局限性,例如“死亡ReLU”问题,即当神经元在训练过程中一直处于非激活状态时,其权重可能无法得到有效的更新。为了解决这个问题,人们提出了一些ReLU的变种,如Leaky ReLU、Parametric ReLU等。

总的来说,尽管存在许多其他非线性函数可供选择,但ReLU函数因其简单性、高效性和在深度学习中的良好表现而成为了一个流行的选择。


7-文本分类情感分析任务激活

在文本分类、情感分析等自然语言处理任务中,特征之间的关系通常是通过神经网络模型来捕捉的。这些特征可以是词向量、词频、句子结构等,而激活函数则在这些模型中起到关键作用,帮助模型学习非线性关系,从而更有效地进行分类或情感分析。

特征之间的关系

  1. 线性关系:在某些简单的文本分类任务中,特征之间的关系可能是线性的。例如,词频特征可以直接用于线性回归或逻辑回归模型。
  2. 非线性关系:在更复杂的任务中,特征之间的关系往往是非线性的。例如,情感分析中,词语的顺序、上下文关系等都需要通过非线性模型来捕捉。
  3. 层次关系:在深度学习模型中,特征之间的关系通常是通过多层神经网络来捕捉的。每一层的输出都是对输入特征的更高层次的抽象表示。

常用的激活函数

  1. ReLU(Rectified Linear Unit)

    • 公式 f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
    • 优点:计算简单,避免了梯度消失问题,广泛用于卷积神经网络(CNN)和全连接网络(FCN)。
    • 适用场景:适用于大多数文本分类和情感分析任务,尤其是在深层网络中。
  2. Sigmoid

    • 公式 f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
    • 优点:输出范围在0到1之间,常用于二分类问题。
    • 缺点:容易出现梯度消失问题,尤其是在深层网络中。
    • 适用场景:适用于二分类的情感分析任务。
  3. Tanh(Hyperbolic Tangent)

    • 公式 f ( x ) = tanh ⁡ ( x ) = e x − e − x e x + e − x f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=tanh(x)=ex+exexex
    • 优点:输出范围在-1到1之间,相对于Sigmoid函数,Tanh函数的梯度更大,训练速度更快。
    • 缺点:仍然存在梯度消失问题。
    • 适用场景:适用于一些需要输出的特征值在一定范围内的场景。
  4. Softmax

    • 公式 f ( x i ) = e x i ∑ j = 1 n e x j f(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{n} e^{x_j}} f(xi)=j=1nexjexi
    • 优点:用于多分类问题,输出是一个概率分布,所有类别的概率和为1。
    • 适用场景:适用于多分类的文本分类和情感分析任务。
  5. Leaky ReLU

    • 公式 f ( x ) = max ⁡ ( 0.01 x , x ) f(x) = \max(0.01x, x) f(x)=max(0.01x,x)
    • 优点:在ReLU的基础上解决了“dying ReLU”问题,即当输入为负时,输出不再是0,而是一个小于0的值。
    • 适用场景:适用于需要处理负值特征的任务,可以提升模型的泛化能力。
  6. GELU(Gaussian Error Linear Unit)

    • 公式 f ( x ) = x ⋅ Φ ( x ) f(x) = x \cdot \Phi(x) f(x)=xΦ(x),其中 Φ ( x ) \Phi(x) Φ(x)是标准正态分布的累积分布函数。
    • 优点:在Transformer模型中表现良好,能够更好地处理复杂的非线性关系。
    • 适用场景:适用于Transformer等复杂的深度学习模型。

总结

  • 特征关系:在文本分类和情感分析中,特征之间通常是非线性关系,需要通过激活函数来捕捉这些关系。
  • 激活函数:常用的激活函数包括ReLU、Sigmoid、Tanh、Softmax、Leaky ReLU和GELU,选择合适的激活函数可以显著提升模型的性能。

在实际应用中,选择激活函数通常取决于任务的复杂度和模型的结构。对于简单的任务,ReLU和Sigmoid可能已经足够;而对于复杂的任务,使用GELU等更复杂的激活函数可能会带来更好的效果。


8-专业词汇解释

  1. 计算效率:ReLU函数非常简单,其数学表达式为f(x) = max(0, x)。这意味着在计算时只需要进行一个简单的比较和取最大值操作,这比其他复杂的非线性函数(如sincos等)要快得多。

  2. 稀疏性:ReLU函数会将所有负值置为0,这有助于引入稀疏性。在神经网络中,稀疏性通常被认为是一种有益的特性,因为它可以帮助模型更好地泛化,并减少过拟合的风险。同时,这也使得网络更加高效,因为许多神经元在某一时刻可能处于非激活状态(输出为0),从而节省了计算资源。

  3. 缓解梯度消失问题:在深度神经网络中,当使用像sigmoidtanh这样的饱和非线性函数时,梯度在反向传播过程中可能会逐渐消失,导致网络难以训练。而ReLU函数在正数区域内的导数为1,这意味着梯度可以顺畅地通过该层,从而缓解了梯度消失的问题。

  4. 生物学启示:ReLU函数在某种程度上模拟了生物神经元的激活方式。在生物学中,神经元通常只在输入信号达到一定阈值时才会被激活。ReLU函数通过设定一个阈值(在本例中为0),实现了类似的行为。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2261493.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

win服务器的架设、windows server 2012 R2 系统的下载与安装使用

文章目录 windows server 2012 R2 系统的下载与安装使用1 windows server 2012 的下载2 打开 VMware 虚拟机软件&#xff08;1&#xff09;新建虚拟机&#xff08;2&#xff09;设置虚拟机&#xff08;3&#xff09;打开虚拟机 windows server 2012&#xff08;4&#xff09;进…

241217-解决Ollama无法通过配置文件修改模型下载路径的方法

A. 常规修改下载模型路径的方法 Linux怎样设置ollama保存模型的路径&#xff1f; - 南门子的回答 - 知乎 B. 上述方法失效时的解决方案 Is there a way to change the download/run directory? Issue #680 ollama/ollama 具体来说也就是在ollama serve 启动之前&#xff…

戴森球计划新玩法!利用MOD和cpolar实现公网环境多人游戏

文章目录 前言1. 下载MOD2.配置cpolar内网穿透3. 主机开启联机3.1 玩家加入游戏 4. 配置固定的TCP端口5. 游玩体验 前言 《戴森球计划》不仅是一款融合了科幻冒险与经营管理元素的游戏&#xff0c;更是一个让玩家在浩瀚宇宙中尽情探索和创造的平台。在这个游戏中&#xff0c;你…

农田“智能管家”:道品科技农业移动式水肥一体机

一、农业移动式水肥一体机的兴起背景 &#xff08;一&#xff09;现代农业面临的挑战 在全球人口持续增长的大背景下&#xff0c;如今的粮食需求较以往有了大幅度增加。据相关统计数据显示&#xff0c;预计到 2030 年&#xff0c;全世界仍有近 6 亿人口长期食物不足。为了保障…

计算机进制的介绍

一.进制介绍 对于整数&#xff0c;有四种表示方式: 1&#xff09;二进制:0,1&#xff0c;满2进1。 在golang中&#xff0c;不能直接使用二进制来表示一个整数&#xff0c;它沿用了c的特点。 参考:Go语言标准库文档中文版 | Go语言中文网 | Golang中文社区 | Golang中国 //赋值…

3D Gaussian Splatting for Real-Time Radiance Field Rendering-简洁版

1. 研究背景与问题 传统的3D场景表示方法&#xff0c;如网格和点云&#xff0c;适合GPU加速的光栅化操作&#xff0c;但缺乏灵活性。而基于神经辐射场&#xff08;NeRF&#xff09;的表示方式&#xff0c;尽管质量高&#xff0c;但需要高成本的训练和渲染时间。此外&#xff0…

用ue5打开网址链接

需要用到 Launch URL 这个函数 字面意思就是打开填写的链接网页 这里填写的是百度&#xff0c;按下Tab键后就会打开百度的网页

电脑为什么会提示“msvcr120.dll缺失”?“找不到msvcr120.dll文件”要怎么解决?

电脑故障排查指南&#xff1a;揭秘“msvcr120.dll缺失”的真相与解决方案 在软件开发与日常维护的广阔天地里&#xff0c;遇到系统报错或文件缺失的情况可谓家常便饭。今天&#xff0c;我将带领大家深入探讨一个常见的系统提示——“msvcr120.dll缺失”&#xff0c;并揭秘其背…

Java:集合(List、Map、Set)

文章目录 1. Collection集合1-1. 迭代器遍历方式1-2. 通过for循环进行遍历1-3. forEach遍历 2. List集合2-1. ArrayList底层实现原理2-2. LinkedList底层实现原理 3. Set集合3-1. HashSet 底层实现3-2. LinkedHashSet 底层实现3-3. TreeSet 4. Collection集合->总结5. Map集…

4_使用 HTML5 Canvas API (3) --[HTML5 API 学习之旅]

4_使用 HTML5 Canvas API (3) --[HTML5 API 学习之旅] 1.缩放 canvas 对象 在 <canvas> 中缩放对象可以通过 scale 方法来实现。这个方法会根据提供的参数对之后绘制的所有内容进行缩放。下面是两个具体的示例&#xff0c;展示如何使用 scale 方法来缩放 canvas 上的对…

嵌入式驱动开发详解18(USB驱动开发)

文章目录 前言USBUSB简介USB信号线USB控制规格 USB—HUBUSB—HUB原理USB—HUB电路 USB—OTGUSB—OTG原理USB—OTG电路 USB协议后续参考文献 前言 该专栏主要是讲解嵌入式相关的驱动开发&#xff0c;但是由于部分模块的驱动框架过于复杂&#xff0c;其内容量不是一个人能完成的…

ubuntu监测硬盘状态

安装smartmontools smartctl -l error /dev/sdk smartctl -i /dev/sda lshw -class disk smartctl -H /dev/sd 结果1&#xff1a; 结果2&#xff1a;PASSED&#xff0c;这表示硬盘健康状态良好 smartctl -a /dev/sdb sdk lsblk blkid 测试写入速度 time dd if/dev/zero of…

华为云联合中国信通院发布首个云计算智能化可观测性能力成熟度模型标准

2024年12月3日&#xff0c;由全球数字经济大会组委会主办&#xff0c;中国信息通信研究院&#xff08;以下简称“中国信通院”&#xff09;、中国通信企业协会承办的2024全球数字经济大会云AI计算国际合作论坛在北京成功召开。本次会议中&#xff0c;华为云联合中国信通院等单位…

Stable Diffusion 提示词语法

1.提示词基础 1.提示词之间用英文逗号,分隔 2.提示词之间是可以换行的 3.权重默认为1,越靠前权重越高 4.数量控制在75个单位以内 2.提示词各种符号的意义 2.1 ()、[]、{}符号 权重值()小括号[]中括号{}大括号默认1111层()1.1[]0.9{}1.052层(()) 1.121.21[[]]0.920.81{{}}1.…

CMake 保姆级教程(上)

整理自 视频 【CMake 保姆级教程【C/C】】 https://www.bilibili.com/video/BV14s4y1g7Zj/?p5&share_sourcecopy_web&vd_source6eb8f46d194c5ef9f89d3331f623a9c3 1、cmake简介 源文件&#xff08;.cpp / .c&#xff09;要经过 工具链 1.1 工具链 1、预处理&#…

[计算机网络]唐僧的”通关文牒“NAT地址转换

1.NAT&#xff1a;唐僧的通关文牒 在古老的西游记中&#xff0c;唐僧师徒四人历经九九八十一难&#xff0c;终于取得了真经。然而&#xff0c;他们并不是一开始就获得了通关文牒&#xff0c;而是经过了重重考验&#xff0c;最终得到了国王的认可&#xff0c;才顺利通过了各个关…

vscode设置终端代理

转载请标明出处&#xff1a;小帆的帆的博客 设置终端代理 修改项目的.vscode/settings.json {"terminal.integrated.env.windows": {"http_proxy": "http://127.0.0.1:7890","https_proxy": "http://127.0.0.1:7890"}, }…

java后端环境配置

因为现在升学了&#xff0c;以前本来想毕业干java的&#xff0c;很多java的环境配置早就忘掉了&#xff08;比如mysql maven jdk idea&#xff09;&#xff0c;想写个博客记录下来&#xff0c;以后方便自己快速搭建环境 JAVA后端开发配置 环境配置jdkideamavenMySQLnavicate17…

云计算HCIP-OpenStack03

书接上回&#xff1a; 云计算HCIP-OpenStack02-CSDN博客 10.KeyStone keystone-Openstack&#xff0c;IAM服务&#xff08;统一身份认证&#xff09;-云服务 建议先去了解Hadoop&#xff08;大数据生态系统&#xff09;中的kerberos&#xff08;LDAPkerberos的鉴权机制&#xf…

.Net WebAPI(一)

文章目录 项目地址一、WebAPI基础1. 项目初始化1.1 创建简单的API1.1.1 get请求1.1.2 post请求1.1.3 put请求1.1.4 Delete请求 1.2 webapi的流程 2.Controllers2.1 创建一个shirts的Controller 3. Routing3.1 使用和创建MapControllers3.2 使用Routing的模板语言 4. Mould Bind…