从YOLOv5到训练实战:易用性和扩展性的加强

news2024/12/17 18:56:51

文章目录

  • 前言
  • 一、模型介绍
  • 二、YOLOv5网络结构
    • 1.Input(输入端):智能预处理与优化策略
    • 2.Backbone(骨干网络):高效特征提取
    • 3.NECK(颈部):特征增强与多尺度融合
    • 4.Prediction(预测端):精准目标预测
  • 三、YOLOv5性能表现
  • 四、YOLOv5使用详解
    • 1.添加模型
    • 2.上传数据集
    • 3.数据标注
    • 4.模型训练
    • 5.模型预测
  • 五、YOLOv5总结
    • 1.更友好的实现与支持多框架
    • 2.多个版本,满足不同需求
    • 3.训练优化
    • 4.支持更强的数据增强
    • 5.轻松部署


前言

目标检测领域一直以来都在速度与精度之间寻找平衡,YOLO系列模型凭借其端到端的高效设计成为了工业界和学术界的明星算法。其中,YOLOv5以其轻量化设计、优秀的性能和实现层面的便捷性,迅速成为最流行的单阶段目标检测工具之一。在这篇文章中,我们将深入解读YOLOv5的网络结构、性能优势以及实用功能,并展示如何YOLOv5基于CoovallyCPU版本模型训练到预测的全流程。


一、模型介绍

YOLOv5是YOLO系列的第五个版本,由 Ultralytics 开发,但并未在官方论文中发布。它以轻量级设计和高效性能为核心,是近年来最流行的单阶段目标检测算法之一,成为工业和学术界广泛使用的工具。相比于 YOLOv1 到 YOLOv4,YOLOv5 进行了诸多改进和创新,这些变化不仅体现在性能优化上,还包括实现层面的便利性和灵活性。在这里插入图片描述

二、YOLOv5网络结构

YOLOv5 的架构设计兼顾了高效性、准确性和实用性,整体分为四大模块:Input(输入端)、Backbone(骨干网络)、Neck(特征融合层) 和 Prediction(预测端)。它们各司其职,从输入图像中提取信息、融合多尺度特征并生成最终预测结果。YOLO网络结构

1.Input(输入端):智能预处理与优化策略

YOLOv5 的输入端模块包含多个核心技术,包括 Mosaic 数据增强、自适应锚框计算和自适应图片缩放。Mosaic数据增强逻辑图

2.Backbone(骨干网络):高效特征提取

骨干网络使用了Focus结构,CSP结构等,负责从输入图像中提取基础特征,例如边缘、纹理、颜色等,为目标检测任务提供支持。在这里插入图片描述

3.NECK(颈部):特征增强与多尺度融合

Neck包括SPP、FPN+PAN结构,加强网络特征融合的能力,NECK的任务是将 Backbone 提取的不同尺度特征进行融合,增强网络在小目标、中等目标和大目标上的检测能力。在这里插入图片描述

4.Prediction(预测端):精准目标预测

YOLOv5采用CIOU_Loss做bounding box的损失函数。预测端负责对 Neck 融合后的特征图进行解码,生成目标的类别、位置和置信度。在这里插入图片描述

三、YOLOv5性能表现

YOLOv5 在多种公开数据集(如 COCO 数据集)上的表现优异。相较于过往YOLO模型,YOLOv5 提高了整体 mAP,尤其是在小目标检测和复杂场景中,表现更加突出。在这里插入图片描述

四、YOLOv5使用详解

本次YOLOv5使用基于Coovally CPU版本进行,YOLOv5模型提供YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本,均可在Coovally开源平台下载使用,其还涵盖YOLOv5多达20种模型版本与变体。在这里插入图片描述

Coovally CPU版本,无需高性能GPU设备即可运行,极大降低了模型训练的门槛,进一步提升模型的部署灵活性和高效性。
Coovally CPU版安装教程可参考:Coovally CPU版:用AI模型微调技术革新数据标注方式

1.添加模型

Coovally CPU版本内置部分YOLOv5模型,可直接使用。在这里插入图片描述

更多YOLOv5模型可进入Coovally开源社区进行下载安装或保存至个人账户直接调用。在这里插入图片描述

2.上传数据集

进入【图像数据】页面,点击创建数据集,输入数据集名称、描述,选择任务类型,上传压缩包文件。在这里插入图片描述

3.数据标注

进入【辅助标注】页面,点击创建样本集,进入样本集详情页,创建好标签进行数据标注。可以选择几组数据进行人工标注,标注完成后发布为数据集启动微调训练,剩余样本集数据即可全部自动化完成。在这里插入图片描述

具体操作步骤可参考:Coovally CPU版:用AI模型微调技术革新数据标注方式

4.模型训练

进入数据集详情页,输入任务名称,选择YOLOv5模型,并配置模版,设置实验E-poch次数,训练次数等信息,即可开始训练。在这里插入图片描述

5.模型预测

模型训练完成后,完成模型转换与模型部署后,即可上传图片进行结果预测。在这里插入图片描述


五、YOLOv5总结

YOLOv5 的设计中有许多创新点,使其在速度和精度之间取得了更好的平衡。

1.更友好的实现与支持多框架

YOLOv5使用PyTorch实现,与YOLOv4的Darknet框架相比,前者更现代化且易于扩展。这种设计使得模型开发者可以更方便地调整模型结构和训练流程。

2.多个版本,满足不同需求

YOLOv5 提供了四种主要模型版本,YOLOv5(Small)、YOLOv5m(Medium)、YOLOv5l(Large)和YOLOv5x(Extra Large)。不仅能够适合更多设备,而且可以针对任务的需求量进行选择。

3.训练优化

YOLOv5自带自动混合精度(AMP)训练支持,这在降低显存占用的同时加快了训练速度。动态Anchor匹配策略代替了YOLOv4的固定Anchor提取策略,使得Anchor更加贴合训练数据。

4.支持更强的数据增强

YOLOv5 引入了 Mosaic 数据增强技术(YOLOv4 中首次提出),并对其进行了优化,从而提升了对小目标和稀疏目标的检测效果。随机仿射变换、颜色抖动等增强方法进一步增强了模型的泛化能力。

5.轻松部署

YOLOv5 支持将模型导出为多种格式,如 ONNX、CoreML、TensorRT 等,方便部署在嵌入式设备、手机端或云端服务器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2261208.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ilya Sutskever发表了对AI未来发展的颠覆性看法

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Crawl4AI:一个为大型语言模型(LLM)和AI应用设计的网页爬虫和数据提取工具实战

这里写目录标题 一、crawl4AI功能及简介1、简介2、特性 二、项目地址三、环境安装四、大模型申请五、代码示例1.生成markdown2.结构化数据 一、crawl4AI功能及简介 1、简介 Crawl4AI 是一个开源的网页爬虫和数据抓取工具,一个python项目,主要为大型语言…

HuLa——一款基于 Tauri+Vue3 构建的桌面即时通讯应用

文章目录 一、HuLa简介二、技术栈介绍三、安装运行四、界面体验五、开源地址 一、HuLa简介 HuLa 是一个基于 Tauri、Vite 5、Vue 3 和 TypeScript 构建的即时通讯系统。它利用了 Tauri 的跨平台能力和 Vue 3 的响应式设计,结合了 TypeScript 的类型安全特性和 Vite…

websocket_asyncio

WebSocket 和 asyncio 指南 简介 本指南涵盖了使用 Python 中的 websockets 库进行 WebSocket 编程的基础知识,以及 asyncio 在异步非阻塞 I/O 中的作用。它提供了构建高效 WebSocket 服务端和客户端的知识,以及 asyncio 的特性和优势。 1. 什么是 WebS…

《Java核心技术I》Swing用户界面组件

Swing和模型-视图-控制器设计模式 用户界面组件各个组成部分,如按钮,复选框,文本框或复杂的树控件,每个组件都有三个特征: 内容,如按钮的状态,文本域中的文本。外观,颜色&#xff0c…

如何通过递延型指标预测项目的长期成果?

递延型指标(Deferred Metrics)是指那些并不立即反映或直接影响当前操作、决策或行为的指标,而是随着时间的推移,才逐渐显现出影响效果的指标。这类指标通常会在一段时间后反映出来,或者需要一定的周期才能展现其成果或…

uni-app开发AI康复锻炼小程序,帮助肢体受伤患者康复!

**提要:**近段时间我们收到多个康复机构用户,咨询AI运动识别插件是否可以应用于肢力运动受限患者的康复锻炼中来,插件是可以应用到AI康复锻炼中的,今天小编就为您介绍一下AI运动识别插件在康腹锻炼中的应用场景。 一、康复机构的应…

C++(十八)

前言: 本文依据上一篇,继续对C中的函数进行学习。 一,内联函数。 再执行函数代码时,比不使用函数花费了更多时间,因为总结步骤,传递参数和返回值都很花费时间。 因此,在调试小型函数时&…

如何在 Ubuntu 上安装 NodeBB 并使用 Nginx 反向代理

简介 NodeBB 是一款基于 Node.js 的开源论坛软件,为在线社区提供了现代化和响应式的解决方案。在 Ubuntu Linux 上运行的 NodeBB 利用了操作系统的强大性和灵活性,以提供高性能和可扩展性。它结合了 MongoDB 或 Redis 进行数据库管理,使其能…

【UE5 C++课程系列笔记】09——多播委托的基本使用

目录 多播委托——申明委托 一、DECLARE_MULTICAST_DELEGATE 二、DECLARE_DYNAMIC_MULTICAST_DELEGATE 多播委托——绑定委托 一、Add 二、AddStatic 三、AddRaw 四、AddSP 五、AddUObject 六、Remove 七、RemoveAll 多播委托——执行 上一篇:【UE5 C课程…

车牌识别OCR授权:助力国产化升级,全面提升道路监控效率

政策背景:国产化升级,推动道路监控产业转型 随着国家对信息安全的重视,国内各大公安、政企机构已进入全面升级国产化平台的实施阶段。根据最新的政策要求,公安和政府部门必须在未来三年内完成平台的国产化替换工作。这一举措不仅…

无人机推流直播平台EasyDSS视频技术如何助力冬季森林防火

冬季天干物燥,大风天气频繁,是森林火灾的高发期。相比传统的人力巡查,无人机具有更高的灵敏度和准确性,尤其在夜间或浓雾天气中,依然能有效地监测潜在火源。 无人机可以提供高空视角和实时图像传输,帮助巡…

linux下查看nginx的安装路径

一般会安装在默认位置下:/usr/local/openresty/nginx 或/usr/local/nginx 查看nginx运行进程,mast process 后面一般是nginx 的安装目录 ps -aux|grep nginx执行ls -l /proc/进程号/exe 会打印出安装/运行位置 ps -aux|grep nginx ls -l /proc/进程号/ex…

Python随机抽取Excel数据并在处理后整合为一个文件

本文介绍基于Python语言,针对一个文件夹下大量的Excel表格文件,基于其中每一个文件,随机从其中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法。 首先,我们来明确一下本文的具体需求。…

网络基础 - TCP/IP 五层模型

文章目录 一、OSI 参考模型中各个分层的作用1、应用层2、表示层3、会话层4、传输层5、网络层6、数据链路层7、物理层 二、OSI 参考模型通信处理示例三、TCP/IP1、定义2、规范 - RFC(Request For Comment) 一、OSI 参考模型中各个分层的作用 1、应用层 2、表示层 负责设备固有数…

探索Web3:从去中心化应用到全球数字化未来

Web3 是互联网发展的下一步,它通过去中心化的理念重新定义了数字世界。与传统的Web2相比,Web3将数据主权交还给用户,让每个人都可以在没有中介的情况下安全地交换信息和价值。本文将探索Web3的基本概念,去中心化应用(D…

pydub AudioSegment实现音频重采样 - python 实现

DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” -------------------------------------------------------------…

uniapp/HBuilder X引入weex报错weex is not defined

出现错误: ‍[⁠ReferenceError⁠]‍ {message: "weex is not defined"} 在www.iconfont.cn把想要的图标放进个人项目中并且下载css文件: 进入HBuilder自己创建的项目中添加一个目录common,添加一个文件free-icon.css 把刚才下载…

音频进阶学习八——傅里叶变换的介绍

文章目录 前言一、傅里叶变换1.傅里叶变换的发展2.常见的傅里叶变换3.频域 二、欧拉公式1.实数、虚数、复数2.对虚数和复数的理解3.复平面4.复数和三角函数5.复数的运算6.欧拉公式 三、积分运算1.定积分2.不定积分3.基本的积分公式4.积分规则线性替换法分部积分法 5.定积分计算…

ActiveMQ 反序列化漏洞CVE-2015-5254复现

文章目录 一、产生原因二、利用条件三、利用过程四、PoC(概念验证)五、poc环境验证使用find搜索vulhub已安装目录打开activeMQ组件查看配置文件端口启动镜像-文件配置好后对于Docker 镜像下载问题及解决办法设置好镜像源地址,进行重启docker查…