OpenIPC开源FPV之Adaptive-Link天空端代码解析

news2024/12/17 13:30:01

OpenIPC开源FPV之Adaptive-Link天空端代码解析

  • 1. 源由
  • 2. 框架代码
  • 3. 报文处理
    • 3.1 special报文
    • 3.2 普通报文
  • 4. 工作流程
    • 4.1 `Profile` 竞选
    • 4.2 `Profile` 研判
    • 4.3 `Profile` 应用
  • 5. 总结
  • 6. 参考资料
  • 7. 补充资料
    • 7.1 RSSI 和 SNR 的物理含义
    • 7.2 信号质量加权的理论依据
    • 7.3 实际应用中的加权方法
    • 7.4 加权方法的优化
    • 7.5 综合考虑信号质量的模型
    • 7.6 8812EU WiFi模块

1. 源由

在《OpenIPC开源FPV之Adaptive-Link工程解析》中,已经有了整个工程的大体概念,接下来再对代码进行逐步分析。

首先,对天空端的代码进行分析:ALink42n.c

2. 框架代码

ALink42n.c相对来说,代码量最少,也是最为基本的一份代码。

目前,尚不太清楚具体n/p/q之间的差异,逻辑上看应该是关于切换配置profile的条件计算方式不太一样,对于稳定性、可靠性方面应该有所差异。

  • The relationship between .c and binary files #7

注:感兴趣的朋友,可以跟下帖子,不过随着代码的深入了解,以及性能测试数据,也能慢慢明晰之间的差异。

  • 加载配置 - “/etc/alink.conf”
  • 加载Profile - “/etc/txprofiles.conf”
  • majestic:80
  • wfb-cli:8000
  • Terminal:bash
  • 绑定默认IP - 10.5.0.10:9999

n/p/q只有q写的是10.5.0.10,其他是10.5.0.2,应该有笔误。

  • 接受两种UDP报文:special报文和普通报文
main
 ├──> load_config(CONFIG_FILE); // "/etc/alink.conf"
 ├──> load_profiles(PROFILE_FILE); // "/etc/txprofiles.conf"
 ├──> bind DEFAULT_IP(10.5.0.10) DEFAULT_PORT(9999)
 ├──>loop recvfrom
 │   ├──> <special:> special_command_message(message);
 │   └──> process_message(message);
 └──> close(sockfd);

3. 报文处理

+--------------+---------------+-------------+
|              | special? (8B) | Msg content |
| Msg len (4B) |---------------+-------------|
|              | RF Signal Estimated Values  |
+--------------+---------------+-------------+

3.1 special报文

  • 报文格式:
+--------------+---------------+-------------+
| Msg len (4B) | special? (8B) | Msg content |
+--------------+---------------+-------------+
  • 代码流程:

处理pause_adaptive/resume_adaptive/request_keyframe命令

special_command_message
 ├──> "pause_adaptive"
 │   └──> paused = true
 ├──> "resume_adaptive"
 │   └──> paused = false
 ├──> "drop_gop"
 │   └──> // 已经注释掉,代码暂时保留
 ├──> "request_keyframe"
 │   └──> < > request_keyframe_interval_ms> `idrCommand`
 └──> "Unknown"

3.2 普通报文

  • 报文格式:
+--------------+------------------+-----------------+----------------+-----------+------+-------+-------+---------------+
| Msg len (4B) | transmitted_time | link_value_rssi | link_value_snr | recovered | lost | rssi1 | rssi2 | rssi3 | rssi4 |
+--------------+------------------+-----------------+----------------+-----------+------+-------+-------+---------------+
  • 代码流程:

解析地面端报文反馈的RF信号参数,比如:RSSI/SNR等

process_message
 ├──> [index/token parse]
 │   ├──> <0> transmitted_time = atoi(token);
 │   ├──> <1> link_value_rssi = atoi(token);
 │   ├──> <2> link_value_snr = atoi(token);
 │   ├──> <3> recovered = atoi(token);
 │   ├──> <4> lost = atoi(token);
 │   ├──> <5> rssi1 = atoi(token);
 │   ├──> <6> rssi2 = atoi(token);
 │   ├──> <7> rssi3 = atoi(token);
 │   ├──> <8> rssi4 = atoi(token);
 │   └──> <.> Ignore extra tokens
 ├──> <!time_synced> settimeofday(&tv, NULL)
 └──> <!paused> start_selection(link_value_rssi, link_value_snr);

4. 工作流程

4.1 Profile 竞选

2.1 paused 为 false 时,满足触发条件则进行 start_selection

start_selection
 ├──> <selection_busy> return
 ├──> <rssi_score == 999> value_chooses_profile(999); // Default settings
 │   └──> return
 ├──> int combined_value = floor(rssi_score * w_rssi + snr_score * w_snr);
 ├──> constrain(1000, 2000, combined_value)
 ├──> float percent_change = fabs((float)(value - baseline_value) / baseline_value) * 100;
 └──> <percent_change >= hysteresis_percent>
     └──> <time_diff_ms >= min_between_changes_ms> value_chooses_profile(value); // apply new settings

注:这里采用了 rssisnr 权重方式。

4.2 Profile 研判

Profile 竞选成功后,在实际应用时,需要检查触发条件,比如:如果当前为需要切换的 Profile则无需触发。

value_chooses_profile
 ├──> Profile* selectedProfile = get_profile(input_value);
 ├──> [Find the index of the selected profile]
 ├──> <previousProfile == currentProfile> return // no changes
 ├──> <previousProfile == 0 && timeElapsed <= hold_fallback_mode_s> return // first profile in fallback time
 ├──> <(currentProfile - previousProfile == 1) && timeElapsed <= hold_modes_down_s> // just one step difference in hold time
 └──> apply_profile(selectedProfile)

无缝的触发场景判断,能够确保信号的稳定传输和平滑切换:

  • what’s the difference between hold_fallback_mode_s and hold_modes_down_s? #9

4.3 Profile 应用

这里需要注意几个细节:

  • 功率增加/减小其命令执行顺序不一致
  • 综合信号质量来选择不同的GI/MCS/FecK/FecN/Bitrate/Gop/Power/ROIqp
apply_profile
├──> Local Variables Initialization
│   └──> Command Templates and Time Calculation
├──> Load Profile Variables into Local Variables
│   └── Copy values from `profile` into local variables
├──> Profile Comparison (currentProfile vs previousProfile)
│   ├──> If currentProfile > previousProfile:
│   │   ├──> Execute Power Command if changed      // "iw dev wlan0 set txpower fixed %d"
│   │   ├──> Execute GOP Command if changed        // "curl -s 'http://localhost/api/v1/set?video0.gopSize=%f'"
│   │   ├──> Execute MCS Command if changed        // "wfb_tx_cmd 8000 set_radio -B 20 -G %s -S 1 -L 1 -M %d"
│   │   ├──> Execute FEC Command if changed        // "wfb_tx_cmd 8000 set_fec -k %d -n %d"
│   │   ├──> Execute Bitrate Command if changed    // "curl -s 'http://localhost/api/v1/set?video0.bitrate=%d'"
│   │   ├──> Execute ROI Command if changed        // "curl -s 'http://localhost/api/v1/set?fpv.roiQp=%s'"
│   │   └──> Execute IDR Command if enabled        // "curl localhost/request/idr"
│   └──> Else (if currentProfile <= previousProfile):
│       └──> Execute commands in different order
└──> Display Stats (msposdCommand)
    └──> Execute `msposdCommand`                   // "echo '%ld s %d M:%d %s F:%d/%d P:%d G:%.1f&L30&F28 CPU:&C &Tc %s' >/tmp/MSPOSD.msg"
rangeMinrangeMaxsetGIsetMCSsetFecKsetFecNsetBitratesetGopwfbPowerROIqp
999999long0121533321.0610,0,0,0
10001150long0121533331.0600,0,0,0
11511300long1121566671.05912,12,12,12
13011700long21215100001.05812,8,8,12
17011850long31215125001.0568,0,0,8
18512001short31215140001.0564,0,0,4
  • rangeMin: Starting value of the range.

  • rangeMax: Ending value of the range.

  • setGI: 是无线通信系统中的 保护间隔(GI,Guard Interval)短GI(400 ns)和长GI(800 ns)是两种常见的保护间隔设置,用于管理OFDM(正交频分复用)符号之间的时间间隔。选择短GI或长GI会影响性能和抗干扰能力。它通常在无线通信协议的 物理层(PHY) 中进行设置,比如Wi-Fi(802.11标准)。

  • setMCS: 定义了用于数据传输的调制和编码方案MCS决定了数据是如何编码的(调制类型),以及为错误纠正添加了多少冗余数据(编码率)。在Wi-Fi(802.11n/ac/ax)中,MCS值通常从0到9(或更高,取决于Wi-Fi版本)。MCS索引是802.11协议标准的一部分,并且可以根据链路质量和信号强度进行调整。

  • setFecK: 指的是前向错误纠正(FEC)方案,特别是表示在应用错误纠正之前的数据位数(K值)FEC用于通过添加冗余数据来提高无线通信的可靠性,从而使接收方能够纠正噪声或干扰引起的错误。K值通常是Reed-Solomon编码卷积编码中的一个参数。

  • setFecN: 表示应用FEC后的总位数(包括数据位和校验位)。 K/N的比率给出了编码率,这决定了为错误纠正添加的冗余程度。较低的FEC值(例如1/2)表示更多的冗余和错误纠正能力,而较高的值(如3/4或5/6)则提供更高的吞吐量,但错误纠正能力较弱。

  • setBitrate: 表示通过无线链路传输数据的速度,通常以Mbps(兆比特每秒)为单位。该值受到调制方案编码率信号强度的影响。在Wi-Fi网络中,通常会根据这些因素动态调整比特率,以优化吞吐量,同时保持稳定的连接。

  • setGop: GOP设置与视频编码相关,尤其是在像H.264H.265这样的压缩方案中。定义了关键帧(I帧)之间的间隔。短GOP意味着更频繁的关键帧(更高的视频质量,较低的压缩),而长GOP意味着较少的关键帧(更高的压缩,较低的质量)。在无线通信中,这个设置对于视频流的传输有很大影响。

  • wfbPower: 指的是无线前端(WFB)硬件的发射功率发射功率是无线通信中的一个关键参数,影响无线信号的范围和质量。在Wi-Fi设备中,功率通常可以根据法规限制、设备能力和网络状况进行调整。wfbPower值可能用于配置设备中射频(RF)部分的放大器

  • ROIqp: ROI QP values as a comma-separated string (e.g., 0,0,0,0).

5. 总结

  • Profile 是一个经验值(测试值),依赖于具体场景应用。
  • 配置参数(如:hold_fallback_mode_s/hold_modes_down_s) 也是一个经验参数,依赖于具体应用场景。
  • RSSI SNR 权重 RF信号质量计算模型,也是一个经验方法,可以调整更优的算法。

基于上述逻辑,对于这些内容的优化,就能更好的将FPV视频无缝的应用于实际环境 - 取决于大量的测试和优化。

注:这里感觉缺少心跳报文丢失的处理,以应对极端情况。

6. 参考资料

【1】OpenIPC开源FPV之Adaptive-Link工程解析

7. 补充资料

RSSI(接收信号强度指示)和SNR(信噪比)是衡量信号质量的常用指标。

加权 RSSI 和 SNR 以综合评估信号质量的做法,基于以下几个理论依据:

  1. RSSI 反映信号强度,而 SNR 反映信号与噪声的比率,两者结合能够更全面地评估信号质量。
  2. 加权方式可以根据应用场景和环境的变化,动态调整各个参数的影响,优化信号质量的评估。
  3. 加权系数的调整通常是基于实际的应用需求和实验数据优化的。

通过加权结合这两个指标,可以更准确地反映无线通信中的实际信号质量,进而为系统做出更合理的决策(如选择最佳基站、调整发射功率、优化资源分配等)。

7.1 RSSI 和 SNR 的物理含义

  • RSSI:表示接收到的信号强度,是衡量信号功率强度的一个指标。通常情况下,RSSI 越高,表示信号接收的质量越好。然而,RSSI 只反映了信号的强度,并不直接考虑噪声的影响。

  • SNR:表示信号与噪声的比值,是衡量信号质量的一个重要指标。SNR 越高,意味着信号在噪声背景下越清晰,通信质量越高。高的 SNR 值通常意味着信号更容易被准确解码,而低的 SNR 值则容易导致误码或通信失败。

7.2 信号质量加权的理论依据

  • 信号强度与噪声的相对重要性
    单独依赖 RSSI 来衡量信号质量可能会产生误导。因为高强度的信号也可能伴随着较强的噪声,而高噪声水平会影响信号的清晰度。因此,SNR 提供了一个更全面的衡量标准,考虑了信号的强度与噪声的关系。加权方式结合了这两个指标,能够更准确地反映实际信号质量。

  • 加权的数学模型
    一种常见的做法是将 RSSI 和 SNR 作为输入参数,通过某种加权函数或线性组合来得到一个综合的信号质量指标。可以根据具体场景的需求调整权重值。例如:
    Q = w 1 ⋅ RSSI + w 2 ⋅ SNR Q = w_1 \cdot \text{RSSI} + w_2 \cdot \text{SNR} Q=w1RSSI+w2SNR
    其中,$ w_1 $ 和 $ w_2 $ 是 RSSI 和 SNR 的权重系数,表示它们在信号质量计算中的相对重要性。

    • 选择合适的权重系数
      权重的设置需要根据具体的应用需求和实验数据来优化。在一些应用中,SNR 可能更为关键,因为它直接影响到数据传输的错误率,而在其他场景中,RSSI 可能更重要,因为信号强度直接决定了通信的覆盖范围。

7.3 实际应用中的加权方法

  • 无线通信系统:在无线通信中,RSSI 和 SNR 都是评估信号质量的重要指标。将两者加权后,系统可以更好地判断信号的稳定性和传输质量。例如,在 Wi-Fi 或移动通信中,基站或接入点会同时考虑这两个参数,以确保数据传输的可靠性。

  • 动态信号质量评估:无线环境通常是动态变化的,信号强度和噪声水平可能随时间和位置变化。通过加权方式,可以更灵活地反映当前信号的质量,特别是在复杂的多径传播和干扰环境中。

7.4 加权方法的优化

  • 信道的特性:在不同的无线信道中,RSSI 和 SNR 对信号质量的影响可能不同。例如,在高干扰环境下,SNR 的作用更为突出,因此可以为 SNR 分配更大的权重。而在信号强度较好的环境中,RSSI 可能会更重要。

  • 基于经验的调整:通过实际测试和仿真,可以根据不同的环境条件和通信需求,调整 RSSI 和 SNR 的权重。例如,在一个需要长距离传输的场景中,可能会更侧重于 RSSI;而在一个要求高数据速率和低错误率的场景中,可能会更关注 SNR。

7.5 综合考虑信号质量的模型

在一些高级的信号质量评估模型中,除了直接的 RSSI 和 SNR 之外,可能还会考虑其他因素,比如:

  • 路径损耗:信号在传播过程中的衰减。
  • 干扰:来自其他无线设备或环境的噪声。
  • 调制方式:不同的调制方式对信号质量的敏感度不同。

这些因素也可能在加权过程中作为附加的输入,进一步提升信号质量评估的准确性。

7.6 8812EU WiFi模块

  • M8812EU2 2T2R 802.11a/n/ac WiFi Module
  • Using BL-M8812EU2 (or other RTL8812EU-based) Wi-Fi Module

功率设置两个方法: WIP: Add support for RTL8812EU-based Wi-Fi adapters for FPV firmware #1344

  • driver_txpower_overridein /etc/wfb.conf. The range is 0~63
  • iw dev <wlan0> set txpower fixed <mBm>. The range is 0~3150, and can be set dynamically when transmitting.
    在这里插入图片描述
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2261088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

23.DDD与微服务

学习视频来源&#xff1a;DDD独家秘籍视频合集 https://space.bilibili.com/24690212/channel/collectiondetail?sid1940048&ctype0 文章目录 DDD与微服务的关系1. DDD可以用微服务实现&#xff0c;也可以不用微服务实现2. DDD是微服务拆分的必须参考项之一3. 微服务架构…

最新全开源IM即时通讯系统源码(PC+WEB+IOS+Android)部署指南

全开源IM&#xff08;即时通讯&#xff09;系统源码部署是一个复杂但系统的过程&#xff0c;涉及多个组件和步骤。以下是一个详细的部署指南&#xff0c;旨在帮助开发者或系统管理员成功部署一个全开源的IM系统&#xff0c;如OpenIM。      IM即时通讯系统源码准备工作   …

PVE系统下——OpenWRT一键扩容脚本(x86下EXT4SquashFS)

扩容了x86上的 OpenWrt 根分区和文件系统。 1.PVE 上增加硬盘大小 2.执行脚本 安装依赖 opkg update opkg install parted losetup resize2fs下载脚本并一键执行 wget -U "" -O expand-root.sh "https://openwrt.org/_export/code/docs/guide-user/advanced…

Midjourney教程之生成同一角色的不同姿势和服装

今天给大家介绍的是在 Midjourney 中如何创建同一个角色的不同姿势。这个功能是大家期待已久的&#xff0c;现在它已经正式可用了。 这个功能能够创建与原始图像相似的角色。"Character Reference" 功能类似于 "Style Reference"&#xff0c;但侧重于角色…

gitlab仓库API操作

几年没接触gitlab了&#xff0c;新版本装完以后代码提交到默认的main分支&#xff0c;master不再是主分支 项目有几十个仓库&#xff0c;研发提交代码后仓库地址和之前的发生了变化 先修改Group的默认分支&#xff0c;不会影响已存在的项目 修改gitlab全局的默认分支 这就引…

aws(学习笔记第十七课) SQS Amazon Simple Queue Service服务

aws(学习笔记第十七课) SQS Amazon Simple Queue Service服务 学习内容&#xff1a; 使用SQS Amazon Simple Queue Service服务整体代码&#xff08;nodejs的通常工程&#xff09;代码动作 1. 使用SQS Amazon Simple Queue Service服务 利用应用程序来学习SQS 创建S3$ aws s…

Swin Transformer:用Transformer实现CNN多尺度操作

文本是关于Swin Transformer基础知识的了解 论文&#xff1a;https://arxiv.org/pdf/2103.14030 项目&#xff1a;https://github. com/microsoft/Swin-Transformer. 实现一个Swin Transformer&#xff1a;Swin Transformer模型具体代码实现-CSDN博客 Swin Transformer mlp…

linux学习笔记02 linux中的基础设置(修改主机名、ip、防火墙、网络配置管理)

目录 修改主机名 ​编辑 修改ip地址 防火墙 关闭networkmanage 修改主机名 查看主机名 hostnamectl status 修改主机名 vim /etc/hostname 修改ip地址 vim /etc/sysconfig/network-scripts/ifcfg-ens33 输入这个命令后对照以下文件修改 TYPE"Ethernet" PROXY_M…

Windows 系统中的组策略编辑器如何打开?

组策略是 Windows 操作系统中用于设置计算机和用户配置的重要工具。它允许管理员控制各种系统功能&#xff0c;从桌面背景到安全设置等。对于 Windows 专业版、企业版和教育版用户来说&#xff0c;可以通过组策略编辑器&#xff08;Group Policy Editor&#xff09;来管理这些设…

【Go】Linux、Windows、Mac 搭建Go开发环境

1、Linux 第一步&#xff0c;在 官网 下包&#xff0c;如 go1.23.4.linux-386.tar.gz&#xff08;注意架构区分&#xff09; 第二步&#xff0c;将包上传至服务器&#xff0c;假如上传到 tmp目录下第三步&#xff0c;安装# 解压 tar -C /app -xzvf go1.23.4.linux-386.tar.gz#…

那一抹暖色

上海这周都是阳光明媚的天气&#xff0c;趁着工作日人少&#xff0c;来到公园看&#x1f341; 圣诞临近&#xff0c;一到这个节日&#xff0c;上海几乎一个月前&#xff0c;街上就有&#x1f385;&#x1f3fb;出没。 就先发这些吧&#xff0c;视频明天再做&#xff0c;眼睛要睁…

计算机毕业设计Python+Django农产品推荐系统 农产品爬虫 农产品商城 农产品大数据 农产品数据分析可视化 PySpark Hadoop

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

系统思考—沟通成本

昨天我们提到&#xff0c;企业真正的“降本”是减少决策错误的成本&#xff0c;今天我们来聊聊另一个重要的“成本”——沟通成本。这其实是一个典型的系统思考问题&#xff0c;沟通成本高并不是孤立存在的&#xff0c;而是系统中多种因素的结果。 1、层级多&#xff0c;信息损…

day11 性能测试(4)——Jmeter使用(黑马的完结,课程不全)直连数据库+逻辑控制器+定时器

【没有所谓的运气&#x1f36c;&#xff0c;只有绝对的努力✊】 目录 1、复习 1.1 断言&#xff08;3种&#xff09; 1.2 关联&#xff08;3种&#xff09; 1.3 录制脚本 2、Jmeter直连数据库 2.1 直连数据库——使用场景 2.2 直连数据库——操作步骤 2.2.1 案例1&…

禅道Bug的一次迁移

一、场景 平时工作记录在公司禅道上的问题想备份一份到本地&#xff0c;但是又没有公司禅道的数据库信息&#xff0c;有时候出测试报告想批量调整数据方便截图很困难&#xff0c;同时也为了学习禅道数据流转过程&#xff0c;所以有了把缺陷保存到本地一份的想法。 实际上禅道支…

Linux环境安装Jenkins

Linux环境安装Jenkins Jenkins和JDK的版本 Jenkins和JDK的版本需要对应&#xff0c;不然无法正常启动。 Jenkins稳定版下载地址 Jenkins服务 手动使用命令启动和关闭Jenkins比较麻烦&#xff0c;所以可以把Jenkins设置成开机启动。 创建Jenkins.sh文件 JAVA_HOME和jenk…

NLP论文速读(MetaMetrics)|使用人类偏好校准生成任务的度量

论文速读|METAMETRICS: CALIBRATING METRICS FOR GENERATION TASKS USING HUMAN PREFERENCES 论文信息&#xff1a; 简介&#xff1a; 本文探讨了在自然语言处理&#xff08;NLP&#xff09;和其他生成任务中&#xff0c;如何评估模型输出的质量以确保其与人类偏好一致。传统的…

【解决】k8s使用kubeadm初始化集群失败问题整理

执行提示命令&#xff0c;查看报错信息 journalctl -xeu kubelet1、错误&#xff1a;running with swap on is no 报错 "command failed" err"failed to run Kubelet: running with swap on is no 解决&#xff1a; swap未禁用&#xff0c;需要禁用swap&…

基于贝叶斯优化LightGBM模型对医院防火隐患区域火灾风险预测

一、引言 &#xff08;一&#xff09;研究背景与意义 医院作为人员密集、设备复杂且存放大量易燃易爆物品的场所&#xff0c;防火安全至关重要。一旦发生火灾&#xff0c;极易造成严重的人员伤亡和财产损失。火灾风险预测能够提前识别潜在的火灾隐患区域&#xff0c;为制定有…

第二届CN-fnst re题wp

题目附件名称amazingbruteforce 首先查壳&#xff0c;发现有upx壳&#xff08;主页有教程&#xff0c;这边就不说了&#xff09;&#xff0c;脱掉壳&#xff0c;64位程序&#xff0c;拖进ida64进行反编译&#xff0c;如下图 很简单的逻辑&#xff0c;v5一个数组&#xff0c;v4…