03篇--二值化与自适应二值化

news2024/12/17 3:27:33

二值化

定义

何为二值化?顾名思义,就是将图像中的像素值改为只有两种值,黑与白。此为二值化。

二值化操作的图像只能是灰度图,意思就是二值化也是一个二维数组,它与灰度图都属于单信道,仅能表示一种色调。而二值化表示的是 极致的黑 与 极致的白。

如何设置二值化

1.阈值法(THRESH_BINARY)

通过设置一个阈值,将灰度图中的每一个像素值与该阈值进行比较,小于等于阈值的像素就被设置为0(黑),大于阈值的像素就被设置为maxval(白)。        

原理代码如下: 

import cv2
import numpy as np

# 读取彩色图
img = cv2.imread("./flower.png")

# 先转换成灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img_binary = np.zeros_like(img_gray)

# 设置一个阈值
thresh = 127

# 遍历灰度图的每一个像素点
for i in range(img_gray.shape[0]):
    for j in range(img_gray.shape[1]):
        if img_gray[i][j] <= thresh:
            img_binary[i, j] = 0
        else:
            img_binary[i, j] = 255

cv2.imshow('image', img)
cv2.imshow('image_gray', img_gray)
cv2.imshow('image_binary', img_binary)
cv2.waitKey(0)

效果如下:

 

 2.反阈值法(THRESH_BINARY_INV)

与阈值法相反。反阈值法是当灰度图的像素值大于阈值时,该像素值将会变成0(黑),当灰度图的像素值小于等于阈值时,该像素值将会变成maxval(白)。

原理代码:

跟上面阈值法的代码一样,只是把 >= 换成 <= ,将筛选对象调换即可

 

将阈值法与反阈值法的处理结果对比,可以发现,两者的黑白色调刚好相反

3.截断阈值法(THRESH_TRUNC):

指将灰度图中的所有像素与阈值进行比较,像素值大于阈值的部分将会被修改为阈值,小于等于阈值的部分不变。换句话说,经过截断阈值法处理过的二值化图中的最大像素值就是阈值。

4.低阈值零处理(THRESH_TOZERO)

就是像素值小于等于阈值的部分被置为0(也就是黑色),大于阈值的部分不变。

5.超阈值零处理(THRESH_TOZERO_INV)

就是将灰度图中的每个像素与阈值进行比较,像素值大于阈值的部分置为0(也就是黑色),像素值小于等于阈值的部分不变。

6.OTSU阈值法(THRESH_OTSU)

在介绍OTSU阈值法之前,我们首先要了解一下双峰图片的概念。

双峰图片就是指灰度图的直方图上有两个峰值,直方图就是对灰度图中每个像素值的点的个数的统计图,如下图所示。

OTSU算法是通过一个值将这张图分前景色和背景色(也就是灰度图中小于这个值的是一类,大于这个值的是一类),通过统计学方法(最大类间方差)来验证该值的合理性,当根据该值进行分割时,使用最大类间方差计算得到的值最大时,该值就是二值化算法中所需要的阈值。通常该值是从灰度图中的最小值加1开始进行迭代计算,直到灰度图中的最大像素值减1,然后把得到的最大类间方差值进行比较,来得到二值化的阈值。具体实现过程,我们不用考虑,直接调用即可。

threshold函数

上述方法只是介绍其原理,在opencv库中这些方法都已经被封装好了,我们只需要调用这些接口即可,并不需要我们手动实现。通过threshold函数来调用,具体介绍如下:

功能:用于对图像进行二值化处理

参数:

  • src: 输入图像,这应该是一个灰度图像(即单通道图像)。如果你有一个彩色图像,你需要先使用 cv2.cvtColor() 将其转换为灰度图。
  • thresh: 阈值,用于将像素划分为两部分。这个值是一个浮点数或整数,取决于图像的数据类型。
  • maxVal: 最大值,用于设置高于阈值的像素值。这个值通常是一个整数,表示你想要将高于阈值的像素设置为的具体数值。
  • type: 阈值类型,这是一个标志,用于指定如何应用阈值。OpenCV 提供了几种不同的阈值类型,如 cv2.THRESH_BINARY、cv2.THRESH_BINARY_INV、cv2.THRESH_TRUNC、cv2.THRESH_TOZERO 和 cv2.THRESH_TOZERO_INV。
  • dst: 输出图像,与输入图像具有相同的大小和类型。这是一个可选参数,如果不提供,函数会创建一个新的图像来存储二值化结果。(一般不会设置这个参数)

函数返回值:

  • ret: 实际使用的阈值。在某些情况下(如使用 cv2.THRESH_OTSU 或 cv2.THRESH_TRIANGLE 标志时),这个值可能会与输入的 thresh 不同。(因为这两个算法会自动计算阈值,从而覆盖掉你所设置的阈值)
  • dst: 二值化后的图像。

代码示例

import cv2

# 读取彩色图
img = cv2.imread("./flower.png")

# 先转换成灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 调用cv2的二值化函数
ret, img_binary = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
print(ret)      # 使用的阈值,可能不是你设定的阈值

cv2.imshow('image', img)
cv2.imshow('image_gray', img_gray)
cv2.imshow('image_binary', img_binary)
cv2.waitKey(0)

自动化二值化

与二值化算法相比,自适应二值化更加适合用在明暗分布不均的图片,因为图片的明暗不均,导致图片上的每一小部分都要使用不同的阈值进行二值化处理,这时候传统的二值化算法就无法满足我们的需求了,于是就出现了自适应二值化。

adaptiveThreshold函数

自适应二值化方法会对图像中的所有像素点计算其各自的阈值,这样能够更好的保留图片里的一些信息。通过adaptiveThreshold函数调用

功能:对图像应用自适应阈值处理。

参数:

  • src: 输入图像,必须为灰度图像。
  • maxValue: 超过或等于阈值的像素值被赋予的值。它可以是任意数值,但通常设置为 255(表示白色)。
  • adaptiveMethod: 自适应阈值算法的选择。有两种选择:
    • cv2.ADAPTIVE_THRESH_MEAN_C:计算邻域的平均值,然后从平均值中减去常数 C。
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:计算邻域像素的加权和(使用高斯窗口),然后从加权和中减去常数 C。
  • thresholdType: 阈值类型,与固定阈值函数 cv2.threshold() 相同。通常是 cv2.THRESH_BINARY 或 cv2.THRESH_BINARY_INV。
  • blockSize: 用于计算阈值的邻域大小(必须是奇数)也就是
  • C: 从计算出的平均值或加权和中减去的常数。
import cv2

# 读取彩色图
img = cv2.imread("./lena.png")

# 先转换成灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 调用自适应二值化函数
img_adaptive = cv2.adaptiveThreshold(img_gray,   # 参数1 灰度图
                                     255,    # 参数2 最大值
                                     cv2.ADAPTIVE_THRESH_GAUSSIAN_C, # 参数3 自适应方法
                                     cv2.THRESH_BINARY,  # 参数4 二值化类型
                                     7,  # 参数5 核的大小
                                     5   # 参数6 计算的阈值减去这个常数是最终阈值
                                     )
cv2.imshow('image', img)
cv2.imshow('image_gray', img_gray)
cv2.imshow('image_adaptive_binary', img_adaptive)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2260830.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

发现一个对话框中的按钮,全部失效,点击都没有任何反应,已经解决

前端问题&#xff0c;技术vue2&#xff0c;ts。 发现一个对话框中的按钮&#xff0c;全部失效&#xff0c;点击都没有任何反应。 因为我只在template标签中加入下面这个代码&#xff0c;并没有注册。 只要有一个子组件没有注册&#xff0c;就会影响所有的按钮&#xff0c;使当前…

RT系列机器人详细介绍(BC-Z、RT-1、OMM、RT-Trajectory、Q-Transformer、RT-2、RT-X、RT-H)

目录 一、BC-Z二、RT-1三、MOO四、RT-Trajectory五、Q-Transformer六、RT-2七、RT-X八、RT-H参考文献 一、BC-Z BC-Z通过结合大规模的交互式模仿学习系统、灵活的任务嵌入和多样化的数据&#xff0c;实现了在未见任务上的零样本泛化&#xff0c;为机器人学习领域提供了一种新的…

鸿蒙系统-前端0帧起手

鸿蒙系统-前端0帧起手 先search 一番 找到对应的入门文档1. 运行项目遇到问题 如下 &#xff08;手动设计npm 的 registry 运行 npm config set registry https://registry.npmjs.org/&#xff09;2.运行后不支持一些模拟器 配置一下&#xff08;如下图&#xff0c;运行成功&am…

Redis是什么?Redis和MongoDB的区别在那里?

Redis介绍 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、基于内存的数据结构存储系统&#xff0c;它可以用作数据库、缓存和消息中间件。以下是关于Redis的详细介绍&#xff1a; 一、数据结构支持 字符串&#xff08;String&#xff09; 这是Redis最…

【问题记录】07 MAC电脑,使用FileZilla(SFTP)连接堡垒机不成功

项目场景&#xff1a; 使用MAC电脑&#xff0c;以子账号&#xff08;非root&#xff09;的形式登录&#xff0c;连接堡垒机CLB&#xff08;传统型负载均衡&#xff09;&#xff0c;使用FileZilla&#xff08;SFTP&#xff09;进行FTP文件传输。 问题描述&#xff1a; MAC电脑…

从0到1实现vue3+vite++elementuiPlus+ts的后台管理系统(一)

前言&#xff1a;从这篇文章开始实现vue3vite的后台管理系统&#xff0c;记录下自己搭建后台系统图的过程。 这篇文章完成项目的初始化和基本配置&#xff0c;这一步可以直接跟着vue3官网进行。整个系列只有前端部分&#xff0c;不涉及后端。 vue3官网&#xff1a;https://cn.…

计算机网络错题

文章目录 码分复用透明传输差错检测停止-等待协议回退N帧协议CSMA/CD协议以太网交换机Vlanip地址的无分类编制方法ip地址的应用规划ip数据包的发送和转发过程路由信息协议IPI2016201720202022 2.5信道 码分复用 透明传输 差错检测 停止-等待协议 回退N帧协议 CSMA/CD协议 以太网…

报错:Method Not Allowed

当报错这个的时候就要注意了&#xff0c;自己的方法是否写对了&#xff01;&#xff01;&#xff01; 就像我的这个因为我的后端是put&#xff0c;所以这也是put&#xff0c;我报错就是因为这写了get&#xff0c;虽然页面是改变了&#xff0c;但是一刷新&#xff0c;就会原形毕…

IDEA 2024 版本配置热部署

在实际开发过程中&#xff0c;每次修改代码就得将项目重启&#xff0c;重新部署&#xff0c;对于一些大型应用来说&#xff0c;重启时间需要花费大量的时间成本。对于一个后端开发者来说&#xff0c;重启过程确实很难受啊 采用下面三步骤可以完成 1.在IDEA中settings中搜索Debb…

客户端(浏览器)vue3本地预览txt,doc,docx,pptx,pdf,xlsx,csv,

预览文件 1、入口文件preview/index.vue2、预览txt3、预览doc4、预览pdf5、预览pptx6、预览xlsx7、预览csv 1、入口文件preview/index.vue 预览样式&#xff0c;如pdf 文件目录如图所示&#xff1a; 代码如下 <template><div class"preview-wrap" ref&…

安卓低功耗蓝牙BLE官方开发例程(JAVA)翻译注释版

官方原文链接 https://developer.android.com/develop/connectivity/bluetooth/ble/ble-overview?hlzh-cn 目录 低功耗蓝牙 基础知识 关键术语和概念 角色和职责 查找 BLE 设备 连接到 GATT 服务器 设置绑定服务 设置 BluetoothAdapter 连接到设备 声明 GATT 回…

uniapp打包apk允许横屏竖屏内容翻转

文章目录 一、教程总结 一、教程 1.添加配置 "orientation": [//竖屏正方向"portrait-primary",//竖屏反方向"portrait-secondary",//横屏正方向"landscape-primary",//横屏反方向"landscape-secondary",//自然方向"…

ElasticSearch 常见故障解析与修复秘籍

文章目录 一、ElasticSearch启动服务提示无法使用root用户二、ElasticSearch启动提示进程可拥有的虚拟内存少三、ElasticSearch提示用户拥有的可创建文件描述符太少四、ElasticSearch集群yellow状态分析五、ElasticSearch节点磁盘使用率过高&#xff0c;read_only状态问题解决六…

Java——网络编程(上)

1 计算机网络 (作用资源共享和信息传递) (计算机网络组成——> 硬件——>计算机设备&#xff0c;外部设备&#xff0c;通信线路 软件——>网络操作系统&#xff0c;网络管理软件&#xff0c;网络通信协议) 计算机网络是指将地理位置不同的具有独立功能的多台计算机…

游戏引擎学习第50天

仓库: https://gitee.com/mrxiao_com/2d_game Minkowski 这个算法有点懵逼 回顾 基本上&#xff0c;现在我们所处的阶段是&#xff0c;回顾最初的代码&#xff0c;我们正在讨论我们希望在引擎中实现的所有功能。我们正在做的版本是初步的、粗略的版本&#xff0c;涵盖我们认…

Unix 和 Windows 的有趣比较

Unix 和 Windows NT 比较 来源于这两本书&#xff0c;把两本书对照来读&#xff0c;发现很多有意思的地方&#xff1a; 《Unix 传奇》 https://book.douban.com/subject/35292726/ 《观止 微软创建NT和未来的夺命狂奔 》 Showstopper!: The Breakneck Race to Create Windows…

攻防世界逆向刷题笔记(新手模式6-?)

6.1000clicks 看题目名字似乎是让咱们点击1000次之后才会出flag。本来打算用CE看能不能搜索出来数值&#xff0c;技术不到家&#xff0c;最后没有搜索到&#xff0c;还导致永劫无间打不了了。所以还是拿出IDA老实分析。 直接搜索flag字符&#xff0c;出来一大堆。张紫涵大佬说…

ANOMALY BERT 解读

出处&#xff1a; ICLR workshop 2023 代码&#xff1a;Jhryu30/AnomalyBERT 可视化效果&#xff1a; 一 提出动机 动机&#xff1a;无监督 TSAD 领域内&#xff0c;“训练集” 也缺失&#xff1a;真值标签&#xff08;GT&#xff09;&#xff1b;换句话说&#xff0c;一个…

Java——网络编程(中)—TCP通讯(下)

1 双向通讯—创建服务端 (双向通信是指通信双方中&#xff0c;任何一方都可为发送端&#xff0c;任何一方都可为接收端) (1 创建ServerSocket对象&#xff0c;accept()返回socket) (2 双向通讯——>也要创建键盘输入对象) (3 通过与客户端对应的Socket对象获取输入流对象…

JavaFX使用jfoenix的UI控件

jfoenix还是一个不错的样式&#xff0c;推荐使用&#xff0c;而且也可以支持scene builder中的拖拖拽拽 需要注意的是过高的javafx版本可能会使得某些样式或控件无法使用 比如alert控件&#xff0c;亲测javaFX 19版本可以正常使用 1.在pom.xml中引入依赖 GitHub地址https://gi…