克服大规模语言模型限制,构建新的应用方法——LangChain

news2025/1/8 5:37:49

大模型

大模型的出现和落地开启了人工智能(AI)新一轮的信息技术革命,改变了人们的生 活方式、工作方式和思维方式。大模型的落地需要数据、算力和算法三大要素。经过几 年发展,大模型的数据集(包括多模态数据集)制作已经形成了规约,Meta、Google和百 度等人工智能公司都有自己的一套数据集标准制作流程。算力方面主要依托GPU、TPU 等硬件资源进行集群计算(即并行计算)。在算法方面,主要以Transformer架构为主流框 架,出现了 OpenAI 的 GPT 系列大模型、Meta 的 Llama 系列大模型以及清华大学的 ChatGLM 系列大模型。目前虽然已经有几千个甚至更多的大模型。

在这种背景下,在基础大模型基础上形成了微调和提示工程等新的技术范式。同时也出现了大模型应用落地的软件产品,如 LangChain、Ollama、Chatbox、LM Studio、 AnythingLLM、LocalAI 和 MaxKB 等,主要用于大模型微调、部署、管理和应用服务 开发。这些产品各有特色,要根据自己的业务场景、业务需求和特色选择。

LangChain 由Harrison Chase 于2022 年创建,是一个开源Python 框架,用于构建大规模语言模型驱动的应用程序。它为开发人员提供模块化、易于使用的组件,用于将语言模型与外部数据源和服务连接起来。LangChain提供了一个完整的生态系统,为开发者带来了一系列核心模块和工具。

大规模语言模型的局限性

大规模语言模型已成为强大的工具,但其功能也有局限性。了解这些限制有助于有 效地设计和部署大规模语言模型。大规模语言模型面临以下几个问题。

● 知识过时:大规模语言模型完全依赖于训练数据,而这些数据可能已经过时。 大规模语言模型缺乏获取实时信息的途径,在回答有关时事的问题时会很吃力。 例如,向大规模语言模型询问最近的一则新闻会得到一个不知情的响应。

● 有限行动:大规模语言模型无法在现实世界中执行行动。它们不能搜索网络、 访问数据库或进行计算。这就限制了它们在需要与外部数据交互的任务中的作 用。试想一下,大规模语言模型在讨论金融时——它可以解释概念,但无法检 索实时股票数据来分析当前趋势。

● 偏见与公平:大规模语言模型可能会从训练数据中继承偏见。这些偏见可能是 宗教性的、意识形态的或政治性的,从而导致歧视性的输出。精心设计和监控 对于降低这些风险至关重要。例如,微软的Tay聊天机器人在2016年推出不久 后就下线了,原因是有毒性互动导致的攻击性推文。

● 成本和速度:由于对计算的要求,训练和运行大规模语言模型的成本可能很高。 此外,文本生成速度也会因模型大小和复杂程度而异。对于生产部署而言,仔 细考虑这些因素至关重要。

● 逻辑推理和数学:虽然大规模语言模型不断取得进步,但通常难以胜任复杂推 理或数学模型的任务。它们可能无法将多个事实结合起来,或进行以前从未遇 到过的计算。例如,大规模语言模型可能知道水果和水的密度,但却无法确定 水果是否会浮起来(这是一个多步骤的推理过程)。

 如何减少大规模语言模型的局限性

大规模语言模型在推理、获取实时信息和避免偏见等方面可能存在不足。为了弥补 这些不足,可以采用循序渐进的方法,以下技术可以减少其局限性。

1. 提示工程和微调:首先要精心设计提示(问题或指示),引导大规模语言模型实现 预期结果。这有助于大规模语言模型更好地理解任务和上下文。此外,在特定数据集上 进行微调可以进一步提高特定应用的性能。

2. 自我任务提示:这种方法鼓励大规模语言模型将复杂的问题分解成更小、更容 易处理的步骤。通过向自己提出明确的问题,大规模语言模型可以找出相关信息,更有 条理地解决问题。

3. 连接外部数据:大规模语言模型缺乏实时知识,可以将其与数据库或Web 搜索 API 等外部数据源集成。这样,大规模语言模型就能获取当前信息,提高响应的准确性。

4. 过滤和监控:尽管采取了预防措施,但偏见和事实错误仍有可能漏网。实施过 滤器,如屏蔽列表、敏感度分类器和禁用词过滤器,可在输出之前捕捉到不适当或不准 确的输出。人工监控对于识别和解决新出现的问题也至关重要。

5. 人工智能的宪法原则:将道德因素纳入开发过程。这包括将公平性和透明度纳 入大规模语言模型本身,使其行为符合人类价值观。 通过将这些策略结合起来,可以将大规模语言模型从随机鹦鹉转变为推理引擎,使 其能够进行更有意义的交互并输出负责任的结果。

像LangChain这样的框架通过提供一 种结构化的方法,将提示、数据源和过滤器结合起来,有效地使用大规模语言模型,从 而简化了这一过程。

《LangChain大模型应用开发》

本书围绕大模型、生成式人工智能、LangChain等主题,以理论、案例和近几年的 技术前沿为主线展开,以代码实现为途径,适合大模型应用开发、人工智能和大数据等 领域的学者和工程师阅读,也可以作为非计算机背景人员作为入门大模型应用实战的 读物。无论是初学者还是经验丰富的开发人员,对于任何想要充分利用大规模语言模型并 在大规模语言模型和LangChain方面保持领先的人来说,这本书都将是宝贵的资源。

大规模语言模型可以生成令人信服的语言,但在推理、知识和使用工具方面却有很 大的局限性。LangChain框架简化了由大规模语言模型驱动的复杂应用程 序的构建,从而减少缺陷。链允许对大规模语言模型、数据库、API等进行排序调用, 以完成多步骤工作流。智能体可利用链根据观察结果采取行动,以管理动态应用程序。 记忆会在执行过程中持久保存信息,以保持状态。这些概念通过整合外部数据、操作和 上下文,使开发人员能够克服单个大规模语言模型的局限性。换句话说,LangChain将 复杂的编排工作简化为可定制的构建模块。 

LangChain 生态系统还包括用于收集反馈的 LangSmith、用于构建复杂有状 态应用程序的LangGraph以及用于简化API创建的LangServe,它们都具有旨在优化性 能、可扩展性和用户参与度的独特功能。此外,TruLens、Twitter和Google Search等重 要的第三方集成也丰富了该框架的功能,使大规模语言模型的应用更加广泛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2257315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/144353087 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 VLMEva…

jenkins邮件的配置详解

Jenkins邮件的配置涉及多个步骤和细节,以下是详细的配置指南: 一、前期准备 确定邮件服务:明确Jenkins将要使用的邮件服务,如QQ邮箱、163邮箱、公司邮箱(基于Microsoft 365或Exchange Server)等。获取SMTP配置信息:根据邮件服务类型,获取相应的SMTP服务器地址、端口号…

DCL语句和函数

1.DCL语句 DCL:数据控制语言,用来管理数据库用户,控制数据库的访问权限。 1.控制数据库有哪些用户可以访问。 2.控制每一个用户的访问权限。 1.1 DCL-管理用户 查询用户 USE mysql SELECT * FROM user; 创建用户 CREATE USER 用户名主…

[go-redis]客户端的创建与配置说明

创建redis client 使用go-redis库进行创建redis客户端比较简单,只需要调用redis.NewClient接口创建一个客户端 redis.NewClient(&redis.Options{Addr: "127.0.0.1:6379",Password: "",DB: 0, })NewClient接口只接收一个参数red…

【NLP高频面题 - 分词篇】WordPiece 分词器是如何训练的?

【NLP高频面题 - 分词篇】WordPiece 分词器是如何训练的? 重要性:★★ 💯 NLP Github 项目: NLP 项目实践:fasterai/nlp-project-practice 介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用…

机器学习决策树原理详解

一、引言 在当今蓬勃发展的人工智能与大数据领域,大模型正以前所未有的影响力改变着众多行业的格局。而决策树作为机器学习算法家族中的经典成员,以其简洁直观的特点和广泛的适用性,不仅能独立解决诸多实际问题,更是诸多先进大模…

[小白系列]Ubuntu安装教程-安装prometheus和Grafana

Docker安装prometheus 拉取镜像 docker pull prom/prometheus 配置文件prometheus.yml 在/data/prometheus/建立prometheus.yml配置文件。(/data/prometheus/可根据自己需要调整) global:scrape_interval: 15s # By default, scrape targets ev…

【Qt之·类QSettings·参数保存】

系列文章目录 文章目录 前言一、概述1.1 QSetting是什么1.2 为什么学习QSetting是重要的 二、不同存储位置的优缺点三、 QSetting的高级用法四、实例演示总结 前言 在当今的应用程序开发中,设置管理是一个至关重要的方面。应用程序的设置包括用户偏好、配置选项和其…

HCIP——VRRP的实验配置

一、VRRP的理论知识 1.1VRRP(虚拟路由冗余协议)的概述: 通过把几台路由设别联合组成一台虚拟的路由设备,既能够实现网关的备份,又能解决多个网关之间互相冲突的问题。 1.2VRRP状态机: VRRP协议状态机有…

从爱尔兰歌曲到莎士比亚:LSTM文本生成模型的优化之旅

上一篇:《再用RNN神经网络架构设计生成式语言模型》 序言:本文探讨了如何通过多种方法改进模型的输出,包括扩展数据集、调整模型架构、优化训练数据的窗口设置,以及采用字符级编码。这些方法旨在提高生成文本的准确性和合理性&am…

Mysql | 尚硅谷 | 第02章_MySQL环境搭建

Mysql笔记:第02章_MySQL环境搭建 说明:本内容整理自尚硅谷B站MySQL视频>>尚硅谷B站MySQL视频 文章目录 Mysql笔记:第02章_MySQL环境搭建第02章_MySQL环境搭建 1. MySQL的卸载步骤1:停止MySQL服务步骤2:[软件](h…

unity 让文字呈现弧度变化

效果: using UnityEngine; using TMPro; using Core;[ExecuteInEditMode] public class TMTextWrap : MonoBehaviour {private TMP_Text m_TextComponent;public AnimationCurve VertexCurve new AnimationCurve(new Keyframe(0, 0), new Keyframe(0.5f, 1), new …

java抽奖系统(一)2.0

1. 项⽬介绍 1.1 背景 随着数字营销的兴起,企业越来越重视通过在线活动来吸引和留住客⼾。抽奖活动作为⼀种有效的营 销⼿段,能够显著提升⽤⼾参与度和品牌曝光率。于是我们就开发了以抽奖活动作为背景的Spring Boot项⽬,通过这个项⽬提供⼀…

【5G】Spectrum 频谱

频谱是移动运营商的关键资产,可用的频谱是定义移动网络容量和覆盖范围的重要因素。本章讨论了5G的不同频谱选项、它们的特性以及5G早期部署阶段的预期频谱。5G是首个旨在利用大约400 MHz到90 GHz之间所有频段的移动无线系统。5G还设计用于在许可、共享和非许可频谱带…

复现论文:PromptTA: Prompt-driven Text Adapter for Source-freeDomain Generalization

github:zhanghr2001/PromptTA: Source-free Domain Generalization 论文:[2409.14163] PromptTA: Prompt-driven Text Adapter for Source-free Domain Generalization 自己标注:PromptTA: Prompt-driven Text Adapter for Source-free Domai…

电子应用设计方案-43:智能手机充电器系统方案设计

智能手机充电器系统方案设计 一、引言 随着智能手机的广泛应用,对充电器的性能、效率和安全性提出了更高的要求。本方案旨在设计一款高效、安全、兼容多种快充协议的智能手机充电器。 二、系统概述 1. 系统目标 - 提供快速、稳定、安全的充电功能。 - 兼容主流的智…

基于springboot+vue实现的项目评审系统 (源码+L文+ppt)4-116

摘 要 相比于以前的传统手工管理方式,智能化的管理方式可以大幅降低运营人员成本,实现了项目评审系统的标准化、制度化、程序化的管理,有效地防止了项目评审的随意管理,提高了信息的处理速度和精确度,能够及时、准确…

深入了解架构中常见的4种缓存模式及其实现

4种缓存模式 随着应用程序的复杂性日益增加,缓存管理变得至关重要。缓存不仅能有效减轻数据库负载,还能显著提升数据访问速度。选择合适的缓存模式能够在不同的业务场景下发挥出最佳效果。 本文将详细介绍四种常见的缓存模式:Cache-Aside (…

【论文阅读】处理器芯片敏捷设计方法:问题与挑战

作者:包云岗老师 包云岗老师是计算机体系结构方向的大牛,推动了体系结构方面的开源事业! 欢迎对本栏目感兴趣的人学习"一生一芯"~ 学习体会: 已有的软硬件生态系统和开发成本制约了对新结构的探索。但目前仍在几种路线上做尝试~ 1…

Android记单词app(包含数据库)

一、功能与要求 实现功能:设计与开发记单词系统的,系统功能包括用户登录、用户注册、单词操作(单词的添加、查询、修改及删除)以及忘记密码等。 指标要求:通过用户登录、用户注册、单词操作、忘记密等功能的设计与开发,掌握Android常用布局、控件的使用、监听器的设置以及…