计算机视觉——相机标定(Camera Calibration)

news2024/12/26 5:38:11

文章目录

  • 1. 简介
  • 2. 原理
  • 3. 相机模型
    • 3.1 四大坐标系
    • 3.2 坐标系间的转换关系
      • 3.2.1 世界坐标系到相机坐标系
      • 3.2.2 相机坐标系到图像坐标系
      • 3.2.3 像素坐标系转换为图像坐标系
      • 3.2.4 世界坐标转换为像素坐标
    • 3.3 畸变
      • 3.3.1 畸变类型
        • 3.3.1.1 径向畸变(Radial Distortion)
        • 3.3.1.2 切向畸变(Tangential Distortion)
      • 3.3.2 畸变模型

在进行机器人视觉相关项目的过程中,首先要进行相机标定,此博客记录相机标定的相关原概念及实施方法。

1. 简介

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定。相机标定是非常关键的环节。

  • 进行摄像机标定的目的:求出相机的内、外参数,以及畸变参数。
  • 标定相机后通常是想做两件事:一个是由于每个镜头的畸变程度各不相同,通过相机标定可以校正这种镜头畸变矫正畸变,生成矫正后的图像;另一个是根据获得的图像重构三维场景。

2. 原理

相机标定的基本原理是通过已知的三维世界坐标系中的点和对应的二维图像坐标系中的点,建立一个数学模型,将三维世界坐标系中的点投影到二维图像坐标系中。这个数学模型通常包括以下几个部分:

  1. 相机内参矩阵(Intrinsic Matrix):描述相机的内部几何特性,包括焦距、主点坐标等。
  2. 畸变系数(Distortion Coefficients):描述图像畸变,包括径向畸变和切向畸变。
  3. 旋转矩阵和平移向量(Rotation Matrix and Translation Vector):描述相机在世界坐标系中的姿态,也可以叫做外参数。

常用标定步骤:

  1. 准备标定板:使用一个已知尺寸的标定板(如棋盘格),并拍摄多张不同角度和位置的图像。
  2. 检测角点:在每张图像中检测标定板的角点,并记录其二维图像坐标。
  3. 生成世界坐标:根据标定板的尺寸,生成标定板角点的三维世界坐标。
  4. 计算内参和畸变系数:使用检测到的角点和生成的世界坐标,计算相机的内参矩阵和畸变系数。
  5. 计算旋转矩阵和平移向量:计算每张图像的旋转矩阵和平移向量。
  6. 计算重投影误差:将世界坐标系中的点投影到图像坐标系中,并与实际检测到的图像坐标进行比较,计算重投影误差。

常用术语

内参矩阵: Intrinsic Matrix
焦距: Focal Length
主点: Principal Point
角点: Corner Point
径向畸变: Radial Distortion
切向畸变: Tangential Distortion
旋转矩阵: Rotation Matrices
平移向量: Translation Vectors
平均重投影误差: Mean Reprojection Error
重投影误差: Reprojection Errors
重投影点: Reprojected Points

3. 相机模型

3.1 四大坐标系

在这里插入图片描述世界坐标系是一个全局坐标系,用于描述物体在真实世界中的位置。世界坐标系用 (X_w, Y_w, Z_w) 表示,独立于相机,可以任意选择原点和坐标轴的方向。

**相机坐标系 (Camera Coordinate System)**以相机的光学中心为原点, Z Z Z轴指向相机的正前方, X X X轴和 Y Y Y轴分别指向相机的右侧和下方,用于描述物体在相机视角下的位置。通常,相机坐标系用 ( X c , Y c , Z c ) (X_c, Y_c, Z_c) (Xc,Yc,Zc) 表示。

**图像坐标系 (Image Coordinate System)**是二维坐标系,用于描述物体在相机成像平面上的投影位置。通常,图像坐标系用 ( x , y ) (x, y) (x,y)表示,图像坐标系的原点通常位于成像平面的中心, x x x轴和 y y y轴分别指向图像的右侧和下方。

**像素坐标系 (Pixel Coordinate System)**是二维坐标系,用于描述物体在数字图像中的像素位置。通常,像素坐标系用 ( u , v ) (u, v) (u,v) 表示,即列数和行数。像素坐标系的原点通常位于图像的左上角, u u u轴和 v v v轴分别指向图像的右侧和下方。

3.2 坐标系间的转换关系

3.2.1 世界坐标系到相机坐标系

世界坐标系到相机坐标系的转换通常通过一个刚体变换(旋转和平移)来实现。这个变换可以用一个4x4的变换矩阵 T w c T_{wc} Twc 表示,包含旋转矩阵 R R R和平移向量 t t t

[ X c Y c Z c 1 ] = T w c [ X w Y w Z w 1 ] = [ R t 0 1 ] [ X w Y w Z w 1 ] \begin{bmatrix}X_c\\Y_c\\Z_c\\1\end{bmatrix}=T_{wc}\begin{bmatrix}X_w\\Y_w\\Z_w\\1\end{bmatrix}=\begin{bmatrix}R&t\\0&1\end{bmatrix}\begin{bmatrix}X_w\\Y_w\\Z_w\\1\end{bmatrix} XcYcZc1 =Twc XwYwZw1 =[R0t1] XwYwZw1

3.2.2 相机坐标系到图像坐标系

img

相机坐标系到图像坐标系的转换是通过透视投影实现的。假设相机焦距为 f f f,则成像面是与 X c O Y c X_cOY_c XcOYc平面平行且距离为 f f f的平面,在相机坐标系中, p ( x c , y c , z c ) p(x_c,y_c,z_c) p(xc,yc,zc),在图像坐标系中的成像点是 p ′ ( x , y ) p'(x,y) p(x,y)

img

利用相似三角形求得: x x c = y y c = f z c \frac{x}{x_c}=\frac{y}{y_c}=\frac{f}{z_c} xcx=ycy=zcf

x = f z c ⋅ x c x=\frac{f}{z_c}\cdot x_c x=zcfxc, y = f z c ⋅ y c y=\frac{f}{z_c}\cdot y_c y=zcfyc,写为矩阵形式:
[ x y 1 ] = [ f z c 0 0 0 0 f z c 0 0 0 0 1 z c 0 ] ⋅ [ x c y c z c 1 ] \begin{bmatrix}x\\y\\1\end{bmatrix}=\begin{bmatrix}\frac{f}{z_c}&0&0&0\\0&\frac{f}{z_c}&0&0\\0&0&\frac{1}{z_c}&0\end{bmatrix} \cdot \begin{bmatrix}x_c\\y_c\\z_c\\1\end{bmatrix} xy1 = zcf000zcf000zc1000 xcyczc1
也可以写作:
z c ⋅ [ x y 1 ] = [ f 0 0 0 0 f 0 0 0 0 1 0 ] ⋅ [ x c y c z c 1 ] z_c \cdot \begin{bmatrix}x\\y\\1\end{bmatrix}=\begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0\end{bmatrix} \cdot \begin{bmatrix}x_c\\y_c\\z_c\\1\end{bmatrix} zc xy1 = f000f0001000 xcyczc1

3.2.3 像素坐标系转换为图像坐标系

在这里插入图片描述像素坐标系uov是一个二维直角坐标系,反映了相机CCD/CMOS芯片中像素的排列情况。原点o位于图像的左上角,u轴、v轴分别于像面的两边平行。像素坐标系中坐标轴的单位是像素(整数)

像素坐标系不利于坐标变换,因此需要建立图像坐标系XOY其坐标轴的单位通常为毫米(mm),原点是相机光轴与相面的交点(称为主点),即图像的中心点,X轴、Y轴分别与u轴、v轴平行。故两个坐标系实际是平移关系,即可以通过平移就可得到。
在这里插入图片描述其中, d x dx dx d y dy dy分别为像素在 x x x y y y轴方向上的物理尺寸, u 0 u_0 u0, v 0 v_0 v0为主点(图像坐标系原点)坐标。

3.2.4 世界坐标转换为像素坐标

在这里插入图片描述

3.3 畸变

3.3.1 畸变类型

在这里插入图片描述

3.3.1.1 径向畸变(Radial Distortion)

径向畸变是由于镜头的形状引起的,通常表现为图像中心区域的放大或缩小。径向畸变可以进一步分为两种类型:

  • 桶形畸变(Barrel Distortion):图像向外凸起,类似于桶的形状。
  • 枕形畸变(Pincushion Distortion):图像向内凹陷,类似于枕头的形状。

x corrected = x ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) y corrected = y ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) x_{\text{corrected}} = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\\ y_{\text{corrected}} = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6) xcorrected=x(1+k1r2+k2r4+k3r6)ycorrected=y(1+k1r2+k2r4+k3r6)
其中:

  • ( x , y ) (x, y) (x,y) 是畸变前的像素坐标。
  • ( x corrected , y corrected ) (x_{\text{corrected}}, y_{\text{corrected}}) (xcorrected,ycorrected) 是畸变校正后的像素坐标。
  • r 2 = x 2 + y 2 r^2 = x^2 + y^2 r2=x2+y2 是像素点到图像中心的距离的平方。
  • k 1 , k 2 , k 3 k_1, k_2, k_3 k1,k2,k3 是径向畸变系数。
3.3.1.2 切向畸变(Tangential Distortion)

切向畸变是由于镜头和成像平面不完全平行引起的。这种畸变会导致图像中的某些区域相对于其他区域发生偏移。切向畸变可以用以下公式描述:

x corrected = x + [ 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) ] y corrected = y + [ p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y ] x_{\text{corrected}} = x + [2p_1 xy + p_2(r^2 + 2x^2)] \\ y_{\text{corrected}} = y + [p_1(r^2 + 2y^2) + 2p_2 xy] xcorrected=x+[2p1xy+p2(r2+2x2)]ycorrected=y+[p1(r2+2y2)+2p2xy]

其中, p 1 , p 2 p_1, p_2 p1,p2 是切向畸变系数。

3.3.2 畸变模型

综合径向畸变和切向畸变,完整的畸变模型可以表示为:
x corrected = x ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) + [ 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) ] y corrected = y ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) + [ p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y ] x_{\text{corrected}} = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + [2p_1 xy + p_2(r^2 + 2x^2)] \\ y_{\text{corrected}} = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + [p_1(r^2 + 2y^2) + 2p_2 xy] xcorrected=x(1+k1r2+k2r4+k3r6)+[2p1xy+p2(r2+2x2)]ycorrected=y(1+k1r2+k2r4+k3r6)+[p1(r2+2y2)+2p2xy]

在相机标定过程中,通过拍摄已知几何形状的标定板(如棋盘格),可以计算出畸变系数 k 1 , k 2 , k 3 , p 1 , p 2 k_1, k_2, k_3, p_1, p_2 k1,k2,k3,p1,p2。然后,利用这些系数对图像进行畸变校正,恢复图像的几何形状。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2253462.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Go学习:编译器(编写程序时应该注意的点)

一、注意: LiteIDE工具: (1)创建项目后,同一个目录下的go文件 只能有一个 main函数,如果多个文件都有main函数,会出现编译错误。例如: (2)如果一个目录下多…

【计算机网络】实验9: 路由信息协议RIP

实验9 路由信息协议RIP 一、实验目的 本实验的主要目的是深入理解RIP(路由信息协议)的工作原理,以便掌握其在网络中的应用。通过对RIP的学习,我们将探讨该协议如何实现路由选择和信息传播,从而确保数据包能够在网络中…

如何选择适合的开源架构框架

如何选择适合的开源架构框架 一、引言二、明确项目需求 —— 筑牢基石(一)功能需求剖析 —— 精准锁定核心(二)性能要求考量 —— 追求极致卓越(三)可扩展性需求 —— 放眼未来蓝图 三、评估开源框架特性 —…

MongoDB-BSON 协议与类型

前言: MongoDB 是一个高性能、无模式的 NoSQL 数据库,广泛应用于大数据处理和实时数据存储。作为一个数据库系统,MongoDB 的核心之一就是其使用的 BSON(Binary JSON)格式,它用于存储数据以及在客户端和数据…

jmeter如何导出中文版的测试报告?

文章目录 0、初始步骤:把报告模板换成中文形式1、首先添加一份聚合报告2、然后点开【聚合报告】3,生成报告3.1 选择【工具】-【generate HTML report】3.2 【generate HTML report】参数详解3.3 、最后点击 【generate report】直接生成。 声明&#xff…

等差数列末项计算

等差数列末项计算 C语言代码C 代码Java代码Python代码 💐The Begin💐点点关注,收藏不迷路💐 给出一个等差数列的前两项a1,a2,求第n项是多少。 输入 一行,包含三个整数a1,a2&#x…

芯科科技突破性超低功耗Wi-Fi 6和低功耗蓝牙5.4模块加速设备部署

致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs(亦称“芯科科技”,今日宣布推出SiWx917Y超低功耗Wi-Fi 6和低功耗蓝牙(Bluetooth LE)5.4模块。 作为成功的第二代无线开发平台的新产品&…

Golang内存模型总结1(mspan、mcache、mcentral、mheap)

1.内存模型 1.1 操作系统存储模型 从上到下分别是寄存器、高速缓存、内存、磁盘,其中越往上速度越快,空间越小,价格越高。 关键词是多级模型和动态切换 1.2 虚拟内存与物理内存 虚拟内存是一种内存管理技术,允许计算机使用比…

重生之我在异世界学编程之C语言:操作符篇

大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文1. 算术操作符2. 关系&#xff0…

深度学习图像增强介绍

目录 一、引言二、常用数据增广方法三、图像变换类3.1 AutoAugment3.2 RandAugment 四、图像裁剪类4.1 Cutout4.2 RandomErasing4.3 HideAndSeek 五、图像混叠5.1 Mixup5.2 Cutmix 六、结论 一、引言 在图像分类任务中,图像数据的增广是一种常用的正则化方法&#…

HBU深度学习实验14-循环神经网络(1)

前言,预备知识 循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络.在循环神经网络中,神经元不但可以接受其他神经元的信息,也可以接受自身的信息,形成具…

使用GDI对象绘制UI时需要注意的若干细节问题总结

目录 1、一个bitmap不能同时被选进两个dc中 2、CreateCompatibleDC和CreateCompatibleBitmap要使用同一个dc作为参数 3、不能删除已经被选入DC中的GDI对象 4、使用完的GDI对象,要将之释放掉,否则会导致GDI对象泄漏 5、CreateCompatibleBitmap返回错…

【Java-数据结构篇】Java 中栈和队列:构建程序逻辑的关键数据结构基石

我的个人主页 我的专栏:Java-数据结构,希望能帮助到大家!!!点赞❤ 收藏❤ 一、引言 1. 栈与队列在编程中的角色定位 栈和队列作为两种基本的数据结构,在众多编程场景中都有着独特的地位。它们为数据的有序…

洛谷P2670扫雷游戏(Java)

三.P2670 [NOIP2015 普及组] 扫雷游戏 题目背景 NOIP2015 普及组 T2 题目描述 扫雷游戏是一款十分经典的单机小游戏。在 n 行 m列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩…

vue2:Cascader 级联选择器中加载两种不同的数据结构

前言 因UI调整,需要将el-tree控件更换为级联选择器,而在原树形控件中,加载了两种不同的数据结构,(参见vue2:树形控件el-tree中加载两种不同结构的数据_vue2 树形插件-CSDN博客)所以现在级联选择器中也需要加载这两种不同的数据结构。 问题 原本以为处理方式差不多,在…

【10】MySQL中的加密功能:如何使用MD5加密算法进行数据加密

文章目录 1. MySQL加密功能概述2. MD5加密算法3. 在MySQL中使用MD5加密4. 使用更安全的加密方法总结 在现代的数据库应用中,数据的安全性和隐私性变得尤为重要。无论是存储用户的个人信息,还是保护敏感的业务数据,确保这些数据不会被未授权访…

【SARL】单智能体强化学习(Single-Agent Reinforcement Learning)《纲要》

📢本篇文章是博主强化学习(RL)领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅…

前端上传后端接收参数为null

记录一下工作中的问题 前端明明把文件传到后台了,但是后台接收参数为null 原因: 前端上传文件的name和后端接收参数名称不匹配 前端 后端 把前端上传的name由upfile改为file即可 本来是很基本的小问题,但因为自己钻了牛角尖一直没搞定&…

Clickhouse MergeTree存储引擎

文章目录 MergeTree特点MergeTree核心参数- ORDER BY- PARTITION BY- PRIMARY KEY- SAMPLE BY- TTL- SETTINGS- index_granularity- index_granularity_bytes- min_index_granularity_bytes- enable_mixed_granularity_parts- use_minimalistic_part_header_in_zookeeper- min_…

【机器学习】—Transformers的扩展应用:从NLP到多领域突破

好久不见!喜欢就关注吧~ 云边有个稻草人-CSDN博客 目录 引言 一、Transformer架构解析 (一)、核心组件 (二)、架构图 二、领域扩展:从NLP到更多场景 1. 自然语言处理(NLP) 2…