Rust循环引用与多线程并发

news2024/12/26 20:23:09

循环引用与自引用

循环引用的概念

循环引用指的是两个或多个对象之间相互持有对方的引用。在 Rust 中,由于所有权和生命周期的严格约束,直接创建循环引用通常会导致编译失败。例如:

// 错误的循环引用示例
struct Node {
    next: Option<Box<Node>>,
}

fn create_cycle() {
    let n1 = Box::new(Node { next: None });
    let n2 = Box::new(Node { next: Some(n1) }); // 编译错误
    n1.next = Some(n2); // 编译错误
}

在这个例子中,尝试创建一个简单的双向链表,但由于所有权转移问题,编译器会报错。

自引用结构体的实现

自引用结构体是指一个结构体内部包含对自身实例的引用。这种结构常用于实现树形数据结构或其他需要递归引用的场景。

use std::rc::{Rc, Weak};

struct Node {
    value: i32,
    parent: Option<Weak<Rc<Node>>>,
    children: Vec<Rc<Node>>,
}

impl Node {
    fn new(value: i32) -> Self {
        Node {
            value,
            parent: None,
            children: Vec::new(),
        }
    }

    fn add_child(&mut self, child: Rc<Node>) {
        self.children.push(child.clone());
        child.parent = Some(Rc::downgrade(&self));
    }
}

使用 Rc 和 Weak 解决循环引用

为了处理循环引用问题,Rust 提供了 Rc 和 Weak 两种类型:

  • Rc<T>: 引用计数类型,允许多个所有者。
  • Weak<T>: 对应于 Rc<T> 的弱引用版本,不会增加引用计数。

通过使用 Weak 可以打破循环引用,因为 Weak 不会增加其指向的对象的引用计数。

生命周期注解的应用

在 Rust 中,生命周期注解可以帮助编译器更好地理解引用之间的关系。特别是在自引用和循环引用的情况下,生命周期注解尤为重要。

// 定义一个带有生命周期注解的函数
fn process_node<'a>(node: &'a Node) {
    println!("Processing node with value: {}", node.value);

    // 访问子节点
    for child in &node.children {
        process_node(child); // 递归处理子节点
    }
}

// 使用生命周期注解的结构体方法
impl<'a> Node {
    fn traverse<'b>(&'a self, visitor: &dyn Fn(&'b Node)) {
        visitor(self);
        for child in &self.children {
            child.traverse(visitor);
        }
    }
}

实际代码示例与分析

下面是一个完整的示例,展示了如何创建并操作自引用结构体:

use std::rc::{Rc, Weak};

struct Node {
    value: i32,
    parent: Option<Weak<Rc<Node>>>,
    children: Vec<Rc<Node>>,
}

impl Node {
    fn new(value: i32) -> Self {
        Node {
            value,
            parent: None,
            children: Vec::new(),
        }
    }

    fn add_child(&mut self, child: Rc<Node>) {
        self.children.push(child.clone());
        child.parent = Some(Rc::downgrade(&self));
    }
}

fn main() {
    let root = Rc::new(Node::new(0));
    let child1 = Rc::new(Node::new(1));
    let child2 = Rc::new(Node::new(2));

    root.add_child(child1.clone());
    root.add_child(child2.clone());

    println!("Root has {} children", root.children.len());

    // 访问子节点的父节点
    if let Some(parent) = child1.parent {
        if let Some(p) = parent.upgrade() {
            println!("Child 1's parent is {}", p.value);
        }
    }

    // 遍历树结构
    root.traverse(&|node| println!("Visiting node with value: {}", node.value));
}

定义 Node 结构:

  • value: 节点存储的值。
  • parent: 父节点的弱引用,初始为 None。
  • children: 一个向量,存储子节点的强引用。

创建新节点:

  • new 方法初始化一个新的 Node 实例,此时没有父节点也没有子节点。

添加子节点:

  • add_child 方法接收一个 Rc<Node> 类型的参数作为子节点。
  • 将子节点添加到当前节点的 children 向量中。
  • 更新子节点的 parent 字段,使用 Rc::downgrade 转换为 Weak 引用。

遍历树结构:

  • traverse 方法使用生命周期注解,递归地遍历整个树结构。

多线程并发

并发与并行概述

  • 并发 (Concurrency): 多个任务可以在同一时间间隔内执行,但不一定在同一时刻执行。
  • 并行 (Parallelism): 多个任务在同一时刻执行,通常涉及硬件支持。

在 Rust 中,可以通过多线程实现并发,而并行则依赖于多核处理器的支持。

使用多线程

在 Rust 中,可以使用标准库中的 std::thread 模块来创建和管理线程。

创建线程

use std::thread;
use std::time::Duration;

fn spawn_thread() {
    thread::spawn(|| {
        for i in 1..10 {
            println!("Thread spawned: {}", i);
            thread::sleep(Duration::from_millis(1));
        }
    });

    for i in 1..5 {
        println!("Main thread: {}", i);
        thread::sleep(Duration::from_millis(1));
    }
}

fn main() {
    spawn_thread();
}

线程同步:消息传递

在 Rust 中,消息传递是一种常见的线程间通信方式。常用的工具包括 std::sync::mpsc 模块中的通道 (channel)。

使用通道

use std::sync::mpsc;
use std::thread;

fn send_messages() {
    let (tx, rx) = mpsc::channel();

    thread::spawn(move || {
        let val = String::from("Hello from the other side!");
        tx.send(val).unwrap();
    });

    let received = rx.recv().unwrap();
    println!("Got: {}", received);
}

fn main() {
    send_messages();
}

线程同步:锁

Rust 标准库提供了多种锁机制,如 Mutex、RwLock 和 Arc。

使用 Mutex

use std::sync::Mutex;
use std::thread;

fn lock_data() {
    let counter = Mutex::new(0);

    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Mutex::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();
            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Counter: {}", *counter.lock().unwrap());
}

fn main() {
    lock_data();
}

使用 RwLock

use std::sync::RwLock;
use std::thread;

fn read_write_lock() {
    let data = RwLock::new(String::from("Hello"));

    let mut handles = vec![];

    for _ in 0..10 {
        let data = RwLock::clone(&data);
        let handle = thread::spawn(move || {
            let mut d = data.write().unwrap();
            *d += "!";
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Data: {}", *data.read().unwrap());
}

fn main() {
    read_write_lock();
}

线程同步:条件变量和信号量

Rust 标准库提供了 Condvar 和 Semaphore 等高级同步原语。

使用 Condvar

use std::sync::{Arc, Condvar, Mutex};
use std::thread;

fn condition_variable() {
    let pair = Arc::new((Mutex::new(false), Condvar::new()));
    let pair_clone = Arc::clone(&pair);

    thread::spawn(move || {
        let (lock, cvar) = &*pair;
        let mut started = lock.lock().unwrap();
        *started = true;
        cvar.notify_one();
    });

    let (lock, cvar) = &*pair;
    let mut started = lock.lock().unwrap();
    while !*started {
        started = cvar.wait(started).unwrap();
    }

    println!("Condition variable signaled!");
}

fn main() {
    condition_variable();
}

使用 Semaphore

use std::sync::Semaphore;
use std::thread;

fn semaphore_example() {
    let sem = Semaphore::new(3);

    let mut handles = vec![];

    for _ in 0..5 {
        let sem = sem.clone();
        let handle = thread::spawn(move || {
            sem.acquire().unwrap();
            println!("Acquired semaphore");
            thread::sleep(std::time::Duration::from_secs(1));
            sem.release();
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }
}

fn main() {
    semaphore_example();
}

线程同步:原子操作与内存顺序

Rust 标准库提供了 std::sync::atomic 模块,用于原子操作和内存顺序控制。

原子操作

use std::sync::atomic::{AtomicUsize, Ordering};

fn atomic_operations() {
    let counter = AtomicUsize::new(0);

    let mut handles = vec![];

    for _ in 0..10 {
        let counter = counter.clone();
        let handle = thread::spawn(move || {
            counter.fetch_add(1, Ordering::Relaxed);
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Counter: {}", counter.load(Ordering::Relaxed));
}

fn main() {
    atomic_operations();
}

内存顺序

use std::sync::atomic::{AtomicUsize, Ordering};

fn memory_ordering() {
    let flag = AtomicUsize::new(0);
    let data = AtomicUsize::new(0);

    let mut handles = vec![];

    let flag_clone = flag.clone();
    let data_clone = data.clone();
    let handle1 = thread::spawn(move || {
        flag_clone.store(1, Ordering::Release);
        data_clone.store(42, Ordering::Relaxed);
    });

    let flag_clone = flag.clone();
    let data_clone = data.clone();
    let handle2 = thread::spawn(move || {
        while flag_clone.load(Ordering::Acquire) == 0 {}
        assert_eq!(data_clone.load(Ordering::Relaxed), 42);
    });

    handles.push(handle1);
    handles.push(handle2);

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Memory ordering example completed.");
}

fn main() {
    memory_ordering();
}

基于 Send 和 Sync 的线程安全

在 Rust 中,Send 和 Sync 是两个重要的类型约束,用于确保数据在线程间安全传递。

Send 约束

use std::thread;

fn send_constraint() {
    struct NotSend(u8);

    impl NotSend {
        fn new() -> Self {
            NotSend(0)
        }
    }

    // NotSend 类型不能在线程间传递
    // let handle = thread::spawn(move || {
    //     println!("NotSend value: {}", NotSend::new().0);
    // });

    // 正确的示例
    let handle = thread::spawn(|| {
        println!("Send value: {}", 42);
    });

    handle.join().unwrap();
}

fn main() {
    send_constraint();
}

Sync 约束

use std::sync::Arc;
use std::thread;

fn sync_constraint() {
    struct NotSync(u8);

    impl NotSync {
        fn new() -> Self {
            NotSync(0)
        }
    }

    // NotSync 类型不能在线程间共享
    // let shared = NotSync::new();
    // let handle = thread::spawn(move || {
    //     println!("NotSync value: {}", shared.0);
    // });

    // 正确的示例
    let shared = Arc::new(42);
    let handle = thread::spawn(move || {
        println!("Sync value: {}", shared);
    });

    handle.join().unwrap();
}

fn main() {
    sync_constraint();
}

文章到此结束,更多相关的信息,请,https://t.me/gtokentool
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2253008.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。

2024-11-29, 由罗马尼亚布加勒斯特大学创建BioDeepAV数据集&#xff0c;它专门设计来评估最先进的深度伪造检测器在面对未见过的深度伪造生成器时的泛化能力&#xff0c;这对于提高检测器的鲁棒性和适应性具有重要意义。 数据集地址&#xff1a;biodeep 一、研究背景&#xff1…

Apache Airflow 快速入门教程

Apache Airflow已经成为Python生态系统中管道编排的事实上的库。与类似的解决方案相反&#xff0c;由于它的简单性和可扩展性&#xff0c;它已经获得了普及。在本文中&#xff0c;我将尝试概述它的主要概念&#xff0c;并让您清楚地了解何时以及如何使用它。 Airflow应用场景 …

【OpenAI库】从0到1深入理解Python调用OpenAI库的完整教程:从入门到实际运用

文章目录 Moss前沿AI一、初识OpenAI API1.1 获取API-Key&#xff08;两种方案&#xff09;1.2 安装OpenAI库 二、Python调用OpenAI API的基础设置2.1 设置API密钥和Base URL2.2 参数详解 三、构建一个简单的聊天应用3.1 创建聊天请求3.2 参数详解3.3 处理响应 四、完整代码示例…

42 基于单片机的智能浇花系统

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;采样DHT11温湿度传感器检测温湿度&#xff0c;通过LCD1602显示 4*4按键矩阵可以设置温度湿度阈值&#xff0c;温度大于阈值则开启水泵&#xff0c;湿度大于阈值则开启风扇…

typecho 添加主题备份及恢复功能

typecho 换主题很简单&#xff0c;但是确有一个比较麻烦的事情&#xff0c;就是主题配置在切换主题的同时也就被删除了。于是&#xff0c;今天我下决心要弄一个备份恢复的功能出来。网上查了很久&#xff0c;都没有找到适合的&#xff08;不过还是有参考价值的&#xff09;。最…

docker部署RustDesk自建服务器

客户端&#xff1a; Releases rustdesk/rustdesk GitHub 服务端&#xff1a; 项目官方地址&#xff1a;GitHub - rustdesk/rustdesk-server: RustDesk Server Program 1、拉取RustDesk库 docker pull rustdesk/rustdesk-server:latest 阿里云库&#xff1a; docker pu…

从零开始了解推荐系统(算法构建、召回、粗排、精排、重排、冷启动、衡量标准)

算法构建 推荐算法流程 实际上是一种信息处理逻辑&#xff0c;当获取了用户与内容的信息之后&#xff0c;按照一定的逻辑处理信息后&#xff0c;产生推荐结果。热度排行榜就是最简单的一种推荐方法&#xff0c;依赖的逻辑是当一个内容被大多数用户喜欢&#xff0c;那么大概率…

【第 1 章 初识 C 语言】1.8 使用 C 语言的 7 个步骤

目录 1.8 使用 C 语言的 7 个步骤 1.8.1 第 1 步&#xff1a;定义程序的目标 1.8.2 第 2 步&#xff1a;设计程序 1.8.3 第 3 步&#xff1a;编写代码 1.8.4 第 4 步&#xff1a;编译 1.8.5 第 5 步&#xff1a;运行程序 1.8.6 第 6 步&#xff1a;测试和调试程序 1.8.…

基于Matlab卡尔曼滤波的GPS/INS集成导航系统研究与实现

随着智能交通和无人驾驶技术的迅猛发展&#xff0c;精确可靠的导航系统已成为提升车辆定位精度与安全性的重要技术。全球定位系统&#xff08;GPS&#xff09;和惯性导航系统&#xff08;INS&#xff09;在导航应用中各具优势&#xff1a;GPS提供全球定位信息&#xff0c;而INS…

C++知识整理day3类与对象(下)——赋值运算符重载、取地址重载、列表初始化、友元、匿名对象、static

文章目录 1.赋值运算符重载1.1 运算符重载1.2 赋值运算符重载 2.取地址重载2.1 const成员函数2.2 取地址运算符重载 3.类与对象的补充3.1 再探构造函数---初始化列表3.2 类型转换3.3 static成员3.4 友元3.5 内部类3.6 匿名对象3.7 对象拷贝时的编译器优化 1.赋值运算符重载 赋…

深入解析级联操作与SQL完整性约束异常的解决方法

目录 前言1. 外键约束与级联操作概述1.1 什么是外键约束1.2 级联操作的实际应用场景 2. 错误分析&#xff1a;SQLIntegrityConstraintViolationException2.1 错误场景描述2.2 触发错误的根本原因 3. 解决方法及优化建议3.1 数据库级别的解决方案3.2 应用层的解决方案 4. 友好提…

dns实验3:主从同步-完全区域传输

服务器192.168.234.111&#xff08;主服务器&#xff09;&#xff0c;打开配置文件&#xff1a; 打开配置文件&#xff1a; 关闭防火墙&#xff0c;改宽松模式&#xff1a; 重启服务&#xff1a; 服务器192.168.234.112&#xff08;从服务器&#xff09;&#xff0c;打开配置文…

LeetCode刷题 -- 分治快排

目录 颜色分类题目解析算法原理代码 排序数组题目解析算法原理代码 数组中第K个最大元素题目解析算法原理代码 LCR 159. 库存管理 III题目解析算法原理代码 颜色分类 题目链接 题目解析 数组分为三块 算法原理 1.如果nums[i] 0&#xff0c;left, i下标对应元素交换&#xff0c…

【论文笔记】Leveraging the Power of MLLMs for Gloss-Free Sign Language Translation

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 基本信息 标题: Leveraging the Power of …

TsingtaoAI具身智能高校实训方案通过华为昇腾技术认证

日前&#xff0c;TsingtaoAI推出的“具身智能高校实训解决方案-从AI大模型机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore&#xff0c;完成并通过昇腾相互兼容性技术认证。 TsingtaoAI&华为昇腾联合解决方案 本项目“具身智能高校实训解决方案”以实现高…

如何抓取亚马逊页面动态加载的内容:Python爬虫实践指南

引言 在现代电商领域&#xff0c;数据的重要性不言而喻。亚马逊作为全球领先的电商平台&#xff0c;其页面上动态加载的内容包含了丰富的商品信息。然而&#xff0c;传统的爬虫技术往往难以应对JavaScript动态加载的内容。本文将详细介绍如何使用Python结合Selenium工具来抓取…

tcpdump抓包wireshark分析

背景 分析特定协议的数据包&#xff0c;如 HTTP、DNS、TCP、UDP 等&#xff0c;诊断网络问题&#xff0c;例如连接故障、延迟和数据包丢失。 大概过程 1.安装tcpdump yum update yum install tcpdump2.抓包&#xff0c;从当前时间起&#xff0c;一小时后停止&#xff0c…

如何进行Appium实现移动端UI自动化测试呢?

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学习下Appium如何入门&#xff0c;那么我们就直奔主题。文章结构如下&#xff1a; 为什么要使用…

骨架行为识别-论文复现

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

Unity 设计模式-观察者模式(Observer Pattern)详解

观察者模式 观察者模式&#xff08;Observer Pattern&#xff09;是一种行为型设计模式&#xff0c;它定义了对象之间的一对多依赖关系。当一个对象的状态发生变化时&#xff0c;它的所有依赖者&#xff08;观察者&#xff09;都会收到通知并自动更新。这种模式用于事件处理系…