【论文阅读】Federated learning backdoor attack detection with persistence diagram

news2025/1/14 19:46:58

目的:检测联邦学习环境下,上传上来的模型是不是恶意的。

1、将一个模型转换为|L|个PD,(其中|L|为层数)

如何将每一层转换成一个PD?

为了评估第𝑗层的激活值,我们需要𝑐个输入来获得一组激活值𝔸。
𝔸是一个二维矩阵,每一列,存放一个输入的 各个神经元的激活值

计算神经元p和神经元q的相似度,𝛾_pq越小,p和q越相似。当 𝛾_pq较小,说明在大多数激活单元上,点 p 和点 q 的差异都很小。换句话说,它们的激活模式是相似的,也可以理解为它们在神经网络中对输入的响应非常相似。在这里插入图片描述
减去均值,除以标准差。标准化了激活值的差异,使得不同激活值的尺度差异得到补偿,确保距离度量不受不同尺度的影响。

基于此距离度量,神经元之间的相似度,可以构造 Vietoris-Rips,计算每一层的PD。

2、PD调整

在这里插入图片描述
这个图画的我有些困惑,应该一层转换成一个PD,但为什么这里画的 多个层 转换成了一个PD?
那是一层的多个channel

由于PDs是非标准的,即不同持久性类别中的点数不一样; 它在不同的层中也有所不同,因此必须对图表进行标准化。 我们将𝑅^2的出生和死亡时间区域划分为(𝑚 ×𝑚)个网格,并将每个网格中的点相加,形成(𝑚 × 𝑚)矩阵。 然后我们将同一模型的PD转换为的 (𝑚 × 𝑚 × |𝐿|) 张量,其中|𝐿| 是模型中选定层的数量。

3、干净模型和非干净模型 PD的差别

在这里插入图片描述
基类模型都是LeNet。LeNet的最后一层是全连接层。
将c个同样的输入(这里的输入应该要确保是干净),输入到两个模型中去,得到全连接层的PD。发现两个PD有明显差异

将后门注入神经网络会导致其神经元出现异常行为,从而导致泛化破坏。 这种破坏导致持久性图中高维特征的出现增加。 因此,后门注入、异常节点行为、泛化能力下降和高维持久性特征的兴起之间建立了逻辑关系,强调了利用 PD 作为检测后门攻击指标的重要性。

4、训练一个检测器

分类器将根据 PD 返回输入模型是恶意还是良性的概率

先训练好一批干净模型和一批恶意模型 ,一个模型会得到一个(𝑚 × 𝑚 × |𝐿|)的向量。分类器的训练集,x为 (𝑚 × 𝑚 × |𝐿|)的向量,y为模型是良性还是恶意的。

构造损失函数,结合PD特征,最小化分类器的损失。

这里的T是 任意选择一个干净模型得到的PD

在这里插入图片描述
在正常loss上乘上 拓扑项,但是加不加这个拓扑项效果其实差不多,是为啥?
因为理论上每个batch内的x和t算距离乘loss以后会被平均到batch上的每个sample再反向传播回去,然后如果batch内有随机分布的正负样本的话其实是抵消了loss。

为啥不把batch设置成1呢?
batch设置的太小可能会学不到特征

我们选择联邦学习过程中的第 1 轮到第 5 轮本地模型作为训练数据集,其中 100 个恶意客户端使用不同的后门攻击策略。 我们将通过在图片左上角注入十字标记的 30% 输入训练的模型标记为正训练数据,而那些干净的模型则标记为负训练数据。 然后我们改变目标标签、图案形状、大小和位置来验证我们训练的分类器的泛化能力。

为了评估 FL 任务中使用 PD 进行分类的性能,我们通过以下方式进行了评估:我们将第 1 轮(攻击开始时)到 𝑘 =10 的模型标记为正训练数据样本,代表各种后门攻击类型 。 干净的模型被标记为负训练数据样本。 此外,我们选择了第 1 轮到第k× 2 轮具有不同后门设置的模型作为验证集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2252741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习案例:ResNet50模型+SE-Net

本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 回顾ResNet模型 ResNet,即残差网络,是由微软研究院的Kaiming He及其合作者于2015年提出的一种深度卷积神经网络架构。该网络架构的核心创新在于引入了“残差连接”&…

js高级-ajax封装和跨域

ajax简介及相关知识 原生ajax AJAX 简介 AJAX 全称为 Asynchronous JavaScript And XML,就是异步的 JS 和 XML。 通过 AJAX 可以在浏览器中向服务器发送异步请求,最大的优势:无刷新获取数据。 按需请求,可以提高网站的性能 AJ…

【AI】Sklearn

长期更新,建议关注、收藏、点赞。 友情链接: AI中的数学_线代微积分概率论最优化 Python numpy_pandas_matplotlib_spicy 建议路线:机器学习->深度学习->强化学习 目录 预处理模型选择分类实例: 二分类比赛 网格搜索实例&…

如何让控件始终处于父容器的居中位置(父容器可任意改变大小)

前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在C#开发winform程序的时候,有时候需要将一个控件居中显示&#xff0c…

Python 调用 Umi-OCR API 批量识别图片/PDF文档数据

目录 一、需求分析 二、方案设计(概要/详细) 三、技术选型 四、OCR 测试 Demo 五、批量文件识别完整代码实现 六、总结 一、需求分析 市场部同事进行采购或给客户报价时,往往基于过往采购合同数据,给出现在采购或报价的金额…

【QT】背景,安装和介绍

TOC 目录 背景 GUI技术 QT的安装 使用流程 QT程序介绍 main.cpp​编辑 Wiget.h Widget.cpp form file .pro文件 临时文件 C作为一门比较古老的语言,在人们的认知里始终是以底层,复杂和高性能著称,所以在很多高性能需求的场景之下…

Linux内核编译流程(Ubuntu24.04+Linux Kernel 6.8.12)

万恶的拯救者,使用Ubuntu没有声音,必须要自己修改一下Linux内核中的相关驱动逻辑才可以,所以被迫学习怎么修改内核&编译内核,记录如下 准备工作 下载Linux源码:在Linux发布页下载并使用gpg签名验证 即&#xff1a…

【阅读笔记】Android广播的处理流程

关于Android的解析,有很多优质内容,看了后记录一下阅读笔记,也是一种有意义的事情, 今天就看看“那个写代码的”这位大佬关于广播的梳理, https://blog.csdn.net/a572423926/category_11509429.html https://blog.c…

linux下Qt程序部署教程

文章目录 [toc]1、概述2、静态编译安装Qt1.1 安装依赖1.2 静态编译1.3 报错1.4 添加环境变量1.5 下载安装QtCreator 3、配置linuxdeployqt环境1.1 在线安装依赖1.2 使用linuxdeployqt提供的程序1.3 编译安装linuxdeployqt 4、使用linuxdeployqt打包依赖1.1 linuxdeployqt使用选…

【PHP】部署和发布PHP网站到IIS服务器

欢迎来到《小5讲堂》 这是《PHP》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言安装PHP稳定版本线程安全版解压使用 PHP配置配置文件扩展文件路径…

视觉经典神经网络学习01_CNN(1)

一、概述 卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格状结构数据的深度学习模型。最初,CNN主要应用于计算机视觉任务,但它的成功启发了在其他领域应用,如自然语言处理等。…

【golang】单元测试,以及出现undefined时的解决方案

单元测试 要对某一方法进行测试时,例如如下这一简单减法函数,选中函数名后右键->转到->测试 1)Empty test file 就是一个空文件,我们可以自己写测试的逻辑 但是直接点绿色箭头运行会出问题: 找不到包。我们要在…

DVWA靶场通关——DOM型XSS漏洞

一、DOM型XSS攻击概述 DOM型XSS(DOM-based Cross-Site Scripting,DOM XSS)是一种跨站脚本攻击(XSS)的变种,它与传统的反射型XSS(Reflected XSS)或存储型XSS(Stored XSS&a…

【Unity 动画】设置跟运动(Apply Root)模型跟着动画产生位移

一、导入的动画本身必须有跟随动画产生位移或者旋转的效果 二、导入Unity后 在Unity中,根运动(Root Motion)是指动画中角色根节点的移动和旋转。根节点通常是角色的根骨骼(Root Bone),它决定了角色的整体…

Spring AI 框架介绍

Spring AI是一个面向人工智能工程的应用框架。它的目标是将Spring生态系统的设计原则(如可移植性和模块化设计)应用于AI领域,并推广使用pojo作为AI领域应用的构建模块。 概述 Spring AI 现在(2024/12)已经支持语言,图像&#xf…

C++小问题

怎么分辨const修饰的是谁 是限定谁不能被改变的? 在C中,const关键字的用途和位置非常关键,它决定了谁不能被修改。const可以修饰变量、指针、引用等不同的对象,并且具体的作用取决于const的修饰位置。理解const的规则能够帮助我们…

近几年,GIS专业的五类就业方向!

近二十几年来,地理信息科学毕业生的就业方向在不断发生变化。 早期的地理信息科学技术主要应用于政府部门,因此学生就业主要在高校、交通运输、规划勘测设计、国土、矿业、水利电力、通讯、农林、城市建设、旅游等国家政府部门或事业单位。 随着地理信…

【Maven】继承和聚合

5. Maven的继承和聚合 5.1 什么是继承 Maven 的依赖传递机制可以一定程度上简化 POM 的配置,但这仅限于存在依赖关系的项目或模块中。当一个项目的多个模块都依赖于相同 jar 包的相同版本,且这些模块之间不存在依赖关系,这就导致同一个依赖…

2、Three.js初步认识场景Scene、相机Camera、渲染器Renderer三要素

三要素之间关系: 有了虚拟场景Scene,相机录像Camera,在相机小屏幕上看到的Renderer Scene当前空间 Mesh人在场景 Camera相机录像 Renderer显示器上 首先先描述下Scene: 这个场景为三要素之一,一切需要展示的东西都需…

工厂方法模式的理解和实践

在软件开发中,设计模式是一种经过验证的解决特定问题的通用方案。工厂方法模式(Factory Method Pattern)是创建型设计模式之一,它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。工厂方法让类的实例化推…