AI 声音:数字音频、语音识别、TTS 简介与使用示例

news2025/1/12 8:43:21

在现代 AI 技术的推动下,声音处理领域取得了巨大进展。从语音识别(ASR)到文本转语音(TTS),再到个性化声音克隆,这些技术已经深入到我们的日常生活中:语音助手、自动字幕生成、语音导航等应用无处不在。

数字音频

音频是声音的“数字化”。声音本质上是空气中振动的波,这些波的振动被麦克风捕捉后转化为电信号。接着,这些信号会通过采样和量化存储为数字数据。

如上图所示。声波最开始是一个连续的模拟信号,然后经过特定频率的采样得到采样点(比如采样频率 48kHz 就是将每秒切割为 48k 个采样点),再通过量化处理得到二进制数据(如果量化位数是 16 位,则表示每个采样点存储为 16 bit 即 2 个字节),最后将元数据(如采样率、量化位数、声道数量等)和采样点二进制数据组合起来就得到了音频文件(比如 WAV 或 MP3)。

ASR 语音识别

语音识别(Automatic Speech RecognitionASR)是将语言转化为文字的技术。

传统方法

早期的 ASR 系统主要依赖基于统计的模型,如:

  • 声学模型(Acoustic Model):将音频信号转换为声学特征,如 MFCC(梅尔频率倒谱系数)。
  • 语言模型(Language Model):使用统计方法预测文字序列的概率。
  • 解码器(Decoder):结合声学和语言模型,将声学特征映射到最可能的文字序列。

这些方法需要大量手工设计的特征和规则,性能受限于数据量和语言模型的复杂度。

深度学习

现代 ASR 系统主要基于深度学习,使用端到端(End-to-End)方法,直接从音频输入到文本输出。

如果将 AI 模型看作一个黑盒,那么训练过程就是输入 <音频, 文本> 数据对,让模型自动学习输入和输出之间的映射关系。经过训练后,模型便可以对新的音频进行推理,生成对应文本。

这种描述是一个高度抽象的视角,背后实际上是一个复杂的过程,比如 OpenAI Whisper

实践证明,基于深度学习方法训练出来的模型具有更好的鲁棒性、准确性和泛化能力。

OpenAI Whisper 使用示例:

import whisper

# 加载模型,默认存储位置 ~/.cache/whisper,可以设置 download_root 改变路径
model = whisper.load_model("base", download_root="root_dir")

# 将音频转换为文本
result = model.transcribe("audio.mp3")
print(result["text"])

你也可以使用 whisper.cpp,一个使用 C/C++ 编写的 OpenAI Whisper 的高性能版本。

TTS 文本转语言

文本转语音(Text-to-SpeechTTS)技术则是将输入文本转化为自然流畅的语音。

从某种抽象的角度来看,TTS(文本转语音)可以被视为语音识别(ASR)的“反过程”,两者都涉及将一种形式的数据(音频或文本)映射到另一种形式,并且现代都采用深度学习模型,通常基于 Transformer 或类似架构,但在某些技术实现(比如中间表示、损失函数、特征表示、目标优化等)和复杂度上并非完全对称。

TTS 示例如下(使用的是 HuggingFace 上的 OuteAI/OuteTTS-0.2-500M 模型):

import outetts

model_config = outetts.HFModelConfig_v1(
    model_path="OuteAI/OuteTTS-0.2-500M",
    language="en",  # Supported languages in v0.2: en, zh, ja, ko
)

interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)

# Optional: Load speaker from default presets
interface.print_default_speakers()
speaker = interface.load_default_speaker(name="male_1")

output = interface.generate(
    text="""Speech synthesis is the artificial production of human speech.
    A computer system used for this purpose is called a speech synthesizer,
    and it can be implemented in software or hardware products.
    """,
    # Lower temperature values may result in a more stable tone,
    # while higher values can introduce varied and expressive speech
    temperature=0.1,
    repetition_penalty=1.1,
    max_length=4096,
    speaker=speaker,
)

output.save("output.wav")
声音克隆

每个人的声音都有独特的特性,比如音调高低、响度、停顿、语气等等,声音克隆就是分析并提取一个人的声音特征,将这些特征参数化(通常表示为高维向量)。特征提取本身没有多大实际用途,为了让这些特征发挥作用,声音克隆通常与 TTS(文本转语音)技术结合,融合克隆的声音特征,将文本生成为与克隆声音相似的语音。

不少 TTS 模型也会直接支持声音克隆的功能,如何调用则取决于具体的模型。例如上例中的 OuteAI/OuteTTS-0.2-500M 模型可以输入一段音频创建具有该音频特征的 speaker:

# Optional: Create a speaker profile (use a 10-15 second audio clip)
speaker = interface.create_speaker(
    audio_path="path/to/audio/file",
    transcript="Transcription of the audio file."
)

总结

语音技术作为 AI 应用中的重要分支,正在改变人机交互的方式。从基础的数字音频处理到 ASRTTS 技术的成熟,再到声音克隆赋予 AI 个性化表达能力,这些技术不仅满足了自动化需求,还为虚拟助手、娱乐、医疗、教育等领域带来了创新可能性。希望本文的介绍能为你打开探索 AI 声音领域的大门!


(我是凌虚,关注我,无广告,专注技术,不煽动情绪,欢迎与我交流)


参考资料:

  • https://github.com/openai/whisper
  • https://huggingface.co/OuteAI/OuteTTS-0.2-500M

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249906.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux服务器安装mongodb

因为项目需要做评论功能&#xff0c;领导要求使用mongodb&#xff0c;所以趁机多学习一下。 在服务器我们使用docker安装mongodb 1、拉取mongodb镜像 docker pull mongo &#xff08;默认拉取最新的镜像&#xff09; 如果你想指定版本可以这样 docker pull mongo:4.4&#…

Java基础 设计模式——针对实习面试

目录 Java基础 设计模式单例模式工厂模式观察者模式策略模式装饰器模式其他设计模式 Java基础 设计模式 单例模式 单例模式&#xff08;Singleton Pattern&#xff09; 定义&#xff1a;确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问这个实例。适用场景&…

分布式搜索引擎之elasticsearch单机部署与测试

分布式搜索引擎之elasticsearch单机部署与测试 1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器&#xff0c;因此需要让es和kibana容器互联。这里先创建一个网络&#xff1a; docker network create es-net1.2.加载镜像 这里我们采用elasticsearch的7.12.1版本的…

【工具】JS解析XML并且转为json对象

【工具】JS解析XML并且转为json对象 <?xml version1.0 encodingGB2312?> <root><head><transcode>hhhhhhh</transcode></head><body><param>ccccccc</param><param>aaaaaaa</param><param>qqqq<…

CSDN设置成黑色背景(谷歌 Edge)

一.谷歌浏览器 浏览器地址输入&#xff1a;Chrome://flags搜索框输入&#xff1a;enable-force-dark将default 改成 enabled&#xff0c;点击重启浏览器 二.Edge浏览器 浏览器地址输入&#xff1a;edge://flags搜索里面输入Auto Dark Mode for Web Contents将default 改成 e…

【动手学电机驱动】STM32-FOC(8)MCSDK Profiler 电机参数辨识

STM32-FOC&#xff08;1&#xff09;STM32 电机控制的软件开发环境 STM32-FOC&#xff08;2&#xff09;STM32 导入和创建项目 STM32-FOC&#xff08;3&#xff09;STM32 三路互补 PWM 输出 STM32-FOC&#xff08;4&#xff09;IHM03 电机控制套件介绍 STM32-FOC&#xff08;5&…

OGRE 3D----3. OGRE绘制自定义模型

在使用OGRE进行开发时,绘制自定义模型是一个常见的需求。本文将介绍如何使用OGRE的ManualObject类来创建和绘制自定义模型。通过ManualObject,开发者可以直接定义顶点、法线、纹理坐标等,从而灵活地构建各种复杂的几何体。 Ogre::ManualObject 是 Ogre3D 引擎中的一个类,用…

【网络安全 | 漏洞挖掘】绕过SAML认证获得管理员面板访问权限

未经许可,不得转载。 文章目录 什么是SAML认证?SAML是如何工作的?SAML响应结构漏洞结果什么是SAML认证? SAML(安全断言标记语言)用于单点登录(SSO)。它是一种功能,允许用户在多个服务之间切换时无需多次登录。例如,如果你已经登录了facebook.com,就不需要再次输入凭…

AI自动化剪辑工具:可将长视频中精彩部分提取合成短视频

最近&#xff0c;我发现了一款特别适合当下短视频潮流的自动化工具&#xff0c;它能够让我们轻松从长视频中剪辑出精彩片段&#xff0c;并快速生成适合分享的短视频。 这款工具叫 AI Youtube Shorts Generator&#xff0c;是一个开源项目&#xff0c;特别适合那些喜欢制作短视…

Windsurf可以上传图片开发UI了

背景 曾经羡慕Cursor的“画图”开发功能&#xff0c;这不Windsurf安排上了。 Upload Images to Cascade Cascade now supports uploading images on premium models Ask Cascade to build or tweak UI from on image upload New keybindings Keybindings to navigate betwe…

(二)Sping Boot学习——Sping Boot注意事项

1.springboot默认是扫描的类是在启动类的当前包或者下级包。 2.运行报错 ERROR&#xff1a;An incompatible version [1.2.33] of the Apache Tomcat Native library is installed, while Tomcat requires version [1.2.34] 网上试了很多方法&#xff0c;直接重新安装更新版…

Elasticsearch:Retrievers 介绍

检索器&#xff08;retrievers&#xff09;是 Elasticsearch 中搜索 API 中添加的新抽象层。它们提供了在单个 _search API 调用中配置多阶段检索管道的便利。此架构通过消除对复杂搜索查询的多个 Elasticsearch API 调用的需求&#xff0c;简化了应用程序中的搜索逻辑。它还减…

Ubuntu下的Doxygen+VScode实现C/C++接口文档自动生成

Ubuntu下的DoxygenVScode实现C/C接口文档自动生成 1、 Doxygen简介 Doxygen 是一个由 C 编写的、开源的、跨平台的文档生成系统。最初主要用于生成 C 库的 API 文档&#xff0c;但目前又添加了对 C、C#、Java、Python、Fortran、PHP 等语言的支持。其从源代码中提取注释&…

Css—实现3D导航栏

一、背景 最近在其他的网页中看到了一个很有趣的3d效果&#xff0c;这个效果就是使用css3中的3D转换实现的&#xff0c;所以今天的内容就是3D的导航栏效果。那么话不多说&#xff0c;直接开始主要内容的讲解。 二、效果展示 三、思路解析 1、首先我们需要将这个导航使用一个大…

快速理解微服务中Fegin的概念

一.由来 1.在传统的架构里面&#xff0c;我们是通过使用RestTemplate来访问其他的服务&#xff0c;但是这种方式就存在了一个很大的缺陷&#xff0c;也就是被调用方如果发生了服务的迁移(IP和端口发生了变化)&#xff0c;那么调用方也需要同步的在代码里面进行修改&#xff0c;…

【Git】Git 完全指南:从入门到精通

Git 完全指南&#xff1a;从入门到精通 Git 是现代软件开发中最重要的版本控制工具之一&#xff0c;它帮助开发者高效地管理项目&#xff0c;支持分布式协作和版本控制。无论是个人项目还是团队开发&#xff0c;Git 都能提供强大的功能来跟踪、管理代码变更&#xff0c;并保障…

Spring Web MVC(详解中)

文章目录 Spring MVC&#xff08;中&#xff09;RESTFul风格设计RESTFul风格概述RESTFul风格特点RESTFul风格设计规范RESTFul风格好处RESTFul风格实战需求分析RESTFul风格接口设计后台接口实现 基于RESTFul风格练习&#xff08;前后端分离模式&#xff09;案例功能和接口分析功…

什么是GAN?

一、基本概念 生成对抗网络&#xff08;Generative Adversarial Network&#xff0c;GAN&#xff09;是一种由两个神经网络共同组成深度学习模型&#xff1a;生成器&#xff08;Generator&#xff09;和判别器&#xff08;Discriminator&#xff09;。这两个网络通过对抗的方式…

Spring |(八)AOP配置管理

文章目录 &#x1f4da;AOP切点表达式&#x1f407;语法格式&#x1f407;通配符 &#x1f4da;AOP通知类型&#x1f407;环境准备&#x1f407;通知类型的使用 &#x1f4da;AOP通知获取数据&#x1f407;环境准备&#x1f407;获取参数&#x1f407;获取返回值&#x1f407;获…

Flink 从入门到实战

Flink中的批和流 批处理的特点是有界、持久、大量&#xff0c;非常适合需要访问全部记录才能完成的计算工作&#xff0c;一般用于离线统计。 流处理的特点是无界、实时, 无需针对整个数据集执行操作&#xff0c;而是对通过系统 传输的每个数据项执行操作&#xff0c;一般用于实…