多目标优化算法——多目标粒子群优化算法(MOPSO)

news2024/11/29 1:03:18

Handling Multiple Objectives With Particle Swarm Optimization(多目标粒子群优化算法)

一、摘要:

本文提出了一种将帕累托优势引入粒子群优化算法的方法,使该算法能够处理具有多个目标函数的问题。与目前其他将粒子群算法扩展到解决多目标优化问题的建议不同,我们的算法使用二级(即外部)粒子库,这些粒子库稍后被其他粒子用来引导它们自己的飞行。我们还加入了一个特殊的突变算子,丰富了我们算法的探索能力。采用几个测试函数和指标,从进化多目标优化的标准文献中验证了所提出的方法。结果表明,该方法具有很强的竞争性,可以被认为是解决多目标优化问题的可行选择。

二、概念解释

1.支配(Dominance ) : 在多目标优化问题中,如果个体p至少有一个目标比个体q好,而且个体p的所有目标都不比q差;那么称个体p支配个体q

S1支配S2:

在这里插入图片描述

S1和S2互不支配:

在这里插入图片描述

2.序值(Rank): 如果p支配q,那么p的序值比q低;如果p和q互不支配,那么p和q有相同的序值

3.拥挤距离(Crowding Distance): 表示个体之间的拥挤程度,测量相同序值个体之间的距离。

4.帕累托(Pareto)

pareto最优解与pareto最优解集:
如果对于优化问题的一个解A,不存在其他的解可以支配解A,那么解A就是一个pareto最优解。显然pareto最优解不只一个,由这些解组成的集合就称为pareto最优解集。pareto最优解集中所有解的互相之间都是非支配的关系,也就是解集中不存在任何一个解完全优于其他解(要和平共处)。所以,和PSO最后要求出唯一一个最优解不同,MOPSO的目标是求出一个互相之间为非支配关系的解的集合,也就是pareto最优解集。

帕累托最优解也称为非劣解、可容许解或有效解;它们对应的向量称为非支配向量。

下图中:S1、S3、S5、S6、S9之间互不支配,且不被其他解支配,这些解称为Pareto解或非支配解。在下图的多目标优化问题中,如果在整个可行的变量空间中再不能找到解能够支配上述五个解,那么上述五个解称为Pareto最优解,所有的Pareto最优解组成Pareto最优解集

在这里插入图片描述

5.帕累托最优解对应的目标函数值就是帕累托最优前沿,对于两个目标的问题,其Pareto最优前沿通常是条线。而对于多个目标,其Pareto最优前沿通常是一个超曲面

6.外部存档:因为粒子群算法在迭代过程中各个粒子的速度和位置都是不断变化的,适应度(目标函数)也随之变化,所以一般都需要采用一个外部存档将pareto最优解的数据存储下来。

三、算法原理

​ 1.算法流程图
在这里插入图片描述

  1. MOPSO:
  • 根据pareto支配原则,计算得到Archive集(存放当前的非劣解)计算局部最优pbest
  • 计算Archive集中的拥挤度在Archive集选择全局最优gbest
  • 更新粒子的速度和位置,并计算适应值更新Archive集(需注意防止溢出)
  1. PSO和MOPSO的大框架一致,MOPSO只是根据多目标问题改进了PSO中的pbest和gbest的选取方法
  • 速度更新公式:

在这里插入图片描述

  • 位置更新公式:

在这里插入图片描述

​ 当一个决策变量超出其边界时,我们会做两件事:

​ 1)决策变量取其相应边界(下边界或上边界)的值;

​ 2)它的速度乘以**-1**,以便它在相反的方向上搜索。

  • pbest的选取:
    单目标问题中,PSO可以根据适应度直接找出该粒子历史最好的位置
    多目标问题中,MOPSO找出该粒子历史最好的位置(保存于该粒子结构体的一个属性中),(即如果记忆中的位置支配当前位置时,则保留记忆中的位置;否则当前位置取代记忆中的位置;)如果在更新当前粒子的历史最好位置发现当前位置与历史最佳互不支配0.5概率随机选一个

    在这里插入图片描述

  • gbest的选取:
    单目标问题中,PSO可以根据适应度直接找出当前最好的粒子
    多目标问题中,MOPSO根据Pareto找出当前最好的粒子集合,最后找到最不拥挤的那个粒子

    MOPSO中,gbest变成了REP[h],REP[h]是从存储库中获取的值;索引h的选择方式如下:那些包含一个以上粒子的超立方体的适应度值等于:任何数字x>1除以它们包含的粒子数的结果。这旨在降低那些包含更多粒子的超立方体的适应度,它可以被视为一种适应度共享的形式。然后,我们将这些适应度值应用于轮盘赌来选择超立方体,再选择相应粒子。当选中某个超立方体后,我们随机选择超立方体中的一个粒子。

  1. 外部存档

​ 外部存档主要目的是保存搜索过程中发现的非支配向量的历史记录,由两个主要部分组成:存档控制器网格

存档控制器:它的功能是决定一个解是否能被添加到归档集中。决策过程如下:算法的种群每次迭代发现的非支配向量与外部储存库的向量进行比较,这个外部储存库在一开始的时候是空的。如果外部的归档集是空的,则接受当前解(见Fig1,case1)。如果这个新解被外部归档集中的某个个体支配,则新解将自动被移除(见Fig1,case2)。否则如果外部归档集中的个体没有一个支配想进入归档集的解,则这个解将被存储在外部归档集中。如果归档集中存在某些解被新解支配,则这些解将从归档集中移除(见Fig1,case3、4)。最后,如果外部种群达到最大容量,则启动自适应网格程序(见Fig1,case5)。

在这里插入图片描述

网格:为了获得均匀分布的Pareto前沿,我们的方法使用了[21]中提出的自适应网格技术。其基本思想是使用一个外部归档集储存所有非支配解。在归档集中,目标函数空间被分割成几个区域,如Fig2所示。注意,如果外部种群中的个体在当前网格边界外,则必须重新计算网格并且重新定位网格中的每个个体(见Fig3)。

在这里插入图片描述

自适应网格实际上是一个超立方体形成的空间。这个超立方体的维度和目标函数一样多。每个超立方体可以被解释为一个不含任何个体的地理区域。自适应网格技术的主要优点是其计算开销少于小生境技术。唯一的例外是如果网格在每一代都必须更新。此时,自适应网格技术的计算复杂度和小生境技术的计算复杂度相同。自适应网格用于实现解的均匀分布。为了实现这个目标,有必要提供确定的信息(即子网格的数量)。

  1. 突变算子:突变算子通过引入随机扰动,有效避免了粒子群陷入局部最优,提升了算法的全局搜索能力。均匀突变保证了随机性,而非均匀突变则随着迭代次数的增加逐渐减少突变程度,平衡了探索和开发的关系。
四、ZDT问题运行结果
  1. ZDT1

    在这里插入图片描述

  2. ZDT2

    在这里插入图片描述

  3. ZDT3

    在这里插入图片描述

  4. ZDT4

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2249415.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTML5好看的音乐播放器多种风格(附源码)

文章目录 1.设计来源1.1 音乐播放器风格1效果1.2 音乐播放器风格2效果1.3 音乐播放器风格3效果1.4 音乐播放器风格4效果1.5 音乐播放器风格5效果 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板,程序开发,在线开发,在线沟通 作者&…

通用网络安全设备之【防火墙】

概念: 防火墙(Firewall),也称防护墙,它是一种位于内部网络与外部网络之间的网络安全防护系统,是一种隔离技术,允许或是限制传输的数据通过。 基于 TCP/IP 协议,主要分为主机型防火…

c++趣味编程玩转物联网:基于树莓派Pico控制有源蜂鸣器

有源蜂鸣器是一种简单高效的声音输出设备,广泛应用于电子报警器、玩具、计时器等领域。在本项目中,我们结合树莓派Pico开发板,通过C代码控制有源蜂鸣器发出“滴滴”声,并解析其中涉及的关键技术点和硬件知识。 一、项目概述 1. 项…

jar包打成exe安装包

打包exe并设置管理员权限 前言打包可执行文件exe准备jre环境运行exe4j并配置 设置执行文件exe管理员权限设置打包工具管理员权限打包exe安装包创建脚本打包 前言 准备安装包: jar包:自己的程序;exe4j:将jar打包可执行的exe&…

NAT:连接私有与公共网络的关键技术(4/10)

一、NAT 的工作原理 NAT 技术的核心功能是将私有 IP 地址转换为公有 IP 地址,使得内部网络中的设备能够与外部互联网通信。其工作原理主要包括私有 IP 地址到公有 IP 地址的转换、端口号映射以及会话表维护这几个步骤。 私有 IP 地址到公有 IP 地址的转换&#xff1…

多模态大型语言模型(MLLM)综述

目录 多模态大语言模型的基础 长短期网络结构(LSTM) 自注意力机制 基于Transformer架构的自然语言处理模型 多模态嵌入概述 多模态嵌入关键步骤 多模态嵌入现状 TF-IDF TF-IDF的概念 TF-IDF的计算公式 TF-IDF的主要思路 TF-IDF的案例 训练和微调多模态大语言模…

学习ASP.NET Core的身份认证(基于Cookie的身份认证3)

用户通过验证后调用HttpContext.SignInAsync函数将用户的身份信息保存在认证Cookie中,以便后续的请求可以验证用户的身份,该函数原型如下所示,其中properties参数的主要属性已在前篇文章中学习,本文学习scheme和principal的意义及用法。 public static …

C++设计模式-模板模式,Template Method

动机(Motivation) 在软件构建过程中,对于某一项任务,它常常有稳定的整体操作结构,但各个子步骤却有很多改变的需求,或者由于固有的原因(比如框架与应用之间的关系)而无法和任务的整…

Jenkins流水线 Allure JUnit5 自动化测试

目录 一、Jenkins Allure配置 1.1 安装Allure插件 1.2 安装Allure工具 1.3 配置测试报告路径 1.4 JenkinsFile 二、Jenkins 邮箱配置 2.1 安装Email Extension Plugin插件 2.2 邮箱配置 2.3 JenkinsFile 三、项目pom.xml 配置 3.1 引入allure-junit5依赖 3.2 引入m…

计算机网络 实验七 NAT配置实验

一、实验目的 通过本实验理解网络地址转换的原理和技术,掌握扩展NAT/NAPT设计、配置和测试。 二、实验原理 NAT配置实验的原理主要基于网络地址转换(NAT)技术,该技术用于将内部私有网络地址转换为外部公有网络地址,从…

shell脚本基础学习_总结篇(完结)

细致观看可以,访问shell脚本学习专栏,对应章节会有配图https://blog.csdn.net/2201_75446043/category_12833287.html?spm1001.2014.3001.5482 导语 一、shell脚本简介 1. 定义: 2. 主要特点: 3. shell脚本的基本结构 4. S…

ACL的原理与配置

ACL技术概述 ACL;访问控制列表 技术背景: 园区重要服务器资源被随意访问,容易泄露机密,造成安全隐患 病毒侵入内网,安全性降低 网络宽带被各类业务随意挤占,服务质量要求高的宽带得不到保障&#xff0…

AWS 新加坡EC2 VPS 性能、线路评测及免费注意事项

原文论坛给你更好的阅读讨论体验💐: AWS 新加坡EC2 VPS 性能、线路评测及免费注意事项 - VPS - 波波论坛 引言 对于那些习惯薅“羊毛”的朋友来说, AWS 的 免费套餐 可能已经非常熟悉。这台vps是我用外币卡薅的免费的12个月的机器&#xf…

关于人工智能

关于人工智能 什么是人工智能 人工智能里面有智能两字,可不代表现在所谓的人工智能真的是智能的。 现在的人工智能是建立在学习上的,被称为机器学习(machine learning),或者说是深度学习(deep learning&…

MyBatis-缓存(一级缓存、二级缓存)

一、缓存(Cache) 1、定义:缓存是一种用于存储数据的硬件设备或存储空间(缓存不是内存)。 2、作用:减轻数据库压力,提高查询性能 3、实现原理:将从数据库中查询出来的对象/记录在使…

【Zookeeper】四,Zookeeper节点类型、通知、仲裁、会话

文章目录 Zookeeper的架构znode的版本Zookeeper的节点类型层级树状结构znode的不同类型 Zookeeper监视与通知通知的类型 Zookeeper的仲裁Zk的会话会话的生命周期 Zookeeper的架构 Zookeeper的服务器端运行两种模式:独立模式(standalone)和仲…

【mac】终端左边太长处理,自定义显示名称(terminal路径显示特别长)

1、打开终端 2、步骤 (1)修改~/.zshrc文件 nano ~/.zshrc(2)添加或修改PS1,我是自定义了名字为“macminiPro” export PS1"macminiPro$ "(3)使用 nano: Ctrl o (字母…

macos 14.0 Monoma 修改顶部菜单栏颜色

macos 14.0 设置暗色后顶部菜单栏还维持浅色,与整体不协调。 修改方式如下:

树莓派3:64位系统串口(UART)使用问题的解决方法

前言 当我们要使用串口进行zigbee的短距离通信时,发现无法使用串口. 原因 树莓派3bCPU内部有两个串口,一个硬件串口(就是我们平时使用的UART),还有一个迷你串口(mini-uart),在老版本的树莓派中把硬件串口分配在GPIO上,可以单独使用.但是在新的树莓派中官方把硬件串口给了蓝牙…

前端Vue项目整合nginx部署到docker容器

一、通过Dockerfile整合nginx方法: 1,使用Vue CLI或npm脚本构建生产环境下的Vue项目。 npm run build or yarn build2,构建完成后,项目目录中会生成一个dist文件夹,里面包含了所有静态资源文件(HTML、CSS…