11.26 深度学习-激活函数

news2024/11/28 0:45:23

# 激活函数的作用是在隐藏层引入非线性,使得神经网络能够学习和表示复杂的函数关系,使网络具备**非线性能力**,增强其表达能力。

# 没有激活函数的话 每次神经元做的都是线性变换 (矩阵相乘)换为图像就是一直在旋转 放大 缩小  这样就始终相当于 一层

# 常见激活函数

# 激活函数通过引入非线性来增强神经网络的表达能力,对于解决线性模型的局限性至关重要。由于反向传播算法(BP)用于更新网络参数,因此激活函数必须是可微的,也就是说能够求导的。

# sigmoid 常用于二分类 输出层

# Sigmoid激活函数是一种常见的非线性激活函数,特别是在早期神经网络中应用广泛。它将输入映射到0到1之间的值,因此非常适合处理概率问题。

# 表达式 f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}

# 定义域 R 值域 (0,1) 比较适用于概率事件

# 可以求导

# 函数图像

# 缺点

# - 梯度消失:  两端变化慢 梯度更新不了一点

#   - 在输入非常大或非常小时,Sigmoid函数的梯度会变得非常小,接近于0。这导致在反向传播过程中,梯度逐渐衰减。

#   - 最终使得早期层的权重更新非常缓慢,进而导致训练速度变慢甚至停滞。

# - 信息丢失:输入100和输入10000经过sigmoid的激活值几乎都是等于 1 的,但是输入的数据却相差 100 倍。

# - 计算成本高: 由于涉及指数运算,Sigmoid的计算比ReLU等函数更复杂,尽管差异并不显著

import torch

import torch.nn.functional as F

import torch.nn as nn

def demo1():

    x=torch.linspace(10,20,100)

    # torch.sigmoid() 使用sigmoid函数进行变换

    y=torch.sigmoid(x)

# 双曲正切 隐藏层

# tanh(双曲正切)是一种常见的非线性激活函数,常用于神经网络的隐藏层。tanh 函数也是一种S形曲线,输出范围为$$(−1,1)$$。

# 值域(-1,1) 图像跟sig很像 不过是0中心

# 1. 输出范围: 将输入映射到$$(-1, 1)$$之间,因此输出是零中心的。相比于Sigmoid函数,这种零中心化的输出有助于     加速收敛。

# 2.    对称性    : Tanh函数关于原点对称,因此在输入为0时,输出也为0。这种对称性有助于在训练神经网络时使数据更平衡。

# 3. 平滑性: Tanh函数在整个输入范围内都是连续且可微的,这使其非常适合于使用梯度下降法进行优化。

# 1. 梯度消失: 虽然一定程度上改善了梯度消失问题,但在输入值非常大或非常小时导数还是非常小,这在深层网络中仍然是个问题。 两端变化慢 梯度更新不了一点

# 2. 计算成本: 由于涉及指数运算,Tanh的计算成本还是略高,尽管差异不大。

def demo2():

    x=torch.linspace(10,20,100)

    # torch.tanh() 使用tanh函数进行变换

    y=torch.tanh(x)

# ReLU(Rectified Linear Unit)是深度学习中最常用的激活函数之一,它的全称是**修正线性单元**。ReLU 激活函数的定义非常简单,但在实践中效果非常好。

# 隐藏层

# 有点线性 但不是一条直线

# ReLU(x)= x>0 x

            # x<0 0

# 导函数两段

# y大于0 导数为1 小于0 为0

# 计算简单:ReLU 的计算非常简单,只需要对输入进行一次比较运算,这在实际应用中大大加速了神经网络的训练。

# 1. 缓解梯度消失问题:相比于 Sigmoid 和 Tanh 激活函数,ReLU 在正半区的导数恒为 1,这使得深度神经网络在训练过程中可以更好地传播梯度,不存在饱和问题。

# 2. 稀疏激活:ReLU在输入小于等于 0 时输出为 0,这使得 ReLU 可以在神经网络中引入稀疏性(即一些神经元不被激活),这种稀疏性可以提升网络的泛化能力。

# 神经元死亡:由于$$ReLU$$在$$x≤0$$时输出为$$0$$,如果某个神经元输入值是负,那么该神经元将永远不再激活,成为“死亡”神经元。随着训练的进行,网络中可能会出现大量死亡神经元,从而会降低模型的表达能力。

# 训练的次数多了神经元死的就多了 降低了模型的表达模型

def test006():

    # 使用relu()import torch.nn.functional as F 的relu

    x = torch.linspace(-20, 20, 1000)

    y = F.relu(x)

def test007():

    x = torch.linspace(-5, 5, 200)

    # 设置leaky_relu的

    slope = 0.03

    y = F.leaky_relu(x, slope)

# LeakyReLU 对relu的优化

# 当x<0时 给一个值 ax a可以任意设置但不为1 比如0.001

# 保证了神经元没有死亡  小于0时 还是有点斜率

# 缺点 要人为的取调a的值 a调的好不好

# Softmax激活函数通常用于分类问题的**输出层**,它能够将网络的输出转换为概率分布,使得输出的各个类别的概率之和为 1。Softmax 特别适合用于多分类问题。

# 输出是一个全概率公式 输出一组概率 每个概率对应 一个结果的可能概率

# 突出差异:$$Softmax$$会放大差异,使得概率最大的类别的输出值更接近$$1$$,而其他类别更接近$$0$$  不会出现 两个概率接近的情况

# 缺点

# 数值不稳定性:在计算过程中,如果$$z_i$$的数值过大,$$e^{z_i}$$可能会导致数值溢出。因此在实际应用中,经常会对$$z_i$$进行调整,如减去最大值以确保数值稳定。传入的数据太大 e的多少次方

# 可以对传入数据进行处理 的同时不会影响概率分布

def demo3():

    input_tensor = torch.tensor([[-1.0, 2.0, -3.0, 4.0], [-2, 3, -3, 9]])

    softmax = nn.Softmax()

    output_tensor = softmax(input_tensor) # 输出了一组概率分布数据 和为1


 

"""

### 3.1 隐藏层

1. 优先选ReLU;

2. 如果ReLU效果不咋地,那么尝试其他激活,如Leaky ReLU等;

3. 使用ReLU时注意神经元死亡问题, 避免出现过多神经元死亡;

4. 不使用sigmoid,尝试使用tanh;

### 3.2 输出层

1. 二分类问题选择sigmoid激活函数;

2. 多分类问题选择softmax激活函数;

3. 回归问题选择identity激活函数;

"""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248718.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C语言】int *p[ ] 与 int (*p)[ ] 的区分辨析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C语言 文章目录 &#x1f4af;前言&#x1f4af;基本概念&#xff1a;数组与指针&#x1f4af;理解 int *p[10] 与 int (*p)[10]1. int *p[10]&#xff1a;存放指针的数组2. int (*p)[10]&#xff1a;指向数组的指针 …

Vue3 el-table 默认选中 传入的数组

一、效果&#xff1a; 二、官网是VUE2 现更改为Vue3写法 <template><el-table:data"tableData"border striperow-key"id"ref"tableRef":cell-style"{ text-align: center }":header-cell-style"{background: #b7babd…

MT6769/MTK6769核心板规格参数_联发科安卓主板开发板方案

MT6769安卓核心板具有集成的蓝牙、FM、WLAN和GPS模块&#xff0c;是一个高度集成的基带平台&#xff0c;结合了调制解调器和应用处理子系统&#xff0c;以支持LTE/LTE-A和C2K智能手机应用。 该芯片集成了两个工作频率高达2.0GHz的ARMCortex-A75内核、六个工作频率高达1.70GHz的…

在Excel中处理不规范的日期格式数据并判断格式是否正确

有一个Excel表&#xff0c;录入的日期格式很混乱&#xff0c;有些看着差不多&#xff0c;但实际多一个空格少一个字符很难发现&#xff0c;希望的理想格式是 1980-01-01&#xff0c;10位&#xff0c;即&#xff1a;“YYYY-mm-dd”&#xff0c;实际上数据表中这样的格式都有 19…

flask请求头回显的学习和探究如何进行错误页面污染回显

请求头 首先我们要了解一些flask的请求和响应是利用了什么。 flask的请求和响应主要利用了werkzeug&#xff0c;那么我们就要先了解一下什么是werkzeug&#xff0c;其结构又是什么。 werkzeug是一个基于python开发的一个web工具包&#xff0c;其是flask的核心组件之一。其功能…

【Unity踩坑】Unity中父对象是非均匀缩放时出现倾斜或剪切现象

The game object is deformed when the parent object is in non-uniform scaling. 先来看一下现象 有两个Cube, Cube1&#xff08;Scale2,1,1)&#xff0c;Cube2&#xff08;Scale1,1,1&#xff09; 将Cube2拖拽为Cube2的子对象。并且将position设置为&#xff08;-0.6,1,0&a…

uni-app 蓝牙开发

一. 前言 Uni-App 是一个使用 Vue.js 开发&#xff08;所有&#xff09;前端应用的框架&#xff0c;能够编译到 iOS、Android、快应用以及各种小程序等多个平台。因此&#xff0c;如果你需要快速开发一款跨平台的应用&#xff0c;比如在 H5、小程序、iOS、Android 等多个平台上…

解决SSL VPN客户端一直提示无法连接服务器的问题

近期服务器更新VPN后&#xff0c;我的win10电脑一致无法连接到VPN服务器&#xff0c; SSL VPN客户端总是提示无法连接到服务端。网上百度尝试了各种方法后&#xff0c;终于通过以下设置方式解决了问题&#xff1a; 1、首先&#xff0c;在控制面板中打开“网络和共享中心”窗口&…

spring boot框架漏洞复现

spring - java开源框架有五种 Spring MVC、SpringBoot、SpringFramework、SpringSecurity、SpringCloud spring boot版本 版本1: 直接就在根下 / 版本2:根下的必须目录 /actuator/ 端口:9093 spring boot搭建 1:直接下载源码打包 2:运行编译好的jar包:actuator-testb…

大语言模型LLM的微调代码详解

代码的摘要说明 一、整体功能概述 这段 Python 代码主要实现了基于 Hugging Face Transformers 库对预训练语言模型&#xff08;具体为 TAIDE-LX-7B-Chat 模型&#xff09;进行微调&#xff08;Fine-tuning&#xff09;的功能&#xff0c;使其能更好地应用于生成唐诗相关内容的…

华三(HCL)和华为(eNSP)模拟器共存安装手册

接上章叙述,解决同一台PC上同时部署华三(HCL)和华为(eNSP)模拟器。原因就是华三HCL 的老版本如v2及以下使用VirtualBox v5版本,可以直接和eNSP兼容Oracle VirtualBox,而其他版本均使用Oracle VirtualBox v6以上的版本,所以正常安装HCL模拟器无法和ENSP兼容。 环境及组件:…

Android 15 版本更新及功能介绍

Android 15版本时间戳 Android 15,代号Vanilla Ice Cream(香草冰淇淋),是当下 Android 移动操作系统的最新主要版本。 开发者预览阶段:2024年2月,谷歌发布了Android 15的第一个开发者预览版本(DP1),这标志着新系统开发的正式启动。随后,在3月和4月,谷歌又相继推出了D…

【含开题报告+文档+PPT+源码】基于Spring Boot+Vue的在线学习平台的设计与实现

开题报告 随着互联网的普及和技术的快速发展&#xff0c;网络教育逐渐崭露头角&#xff0c;成为现代教育领域的重要组成部分。网络教育以其灵活性、便捷性和资源共享性&#xff0c;吸引了越来越多的学习者。同时&#xff0c;随着学习者需求的多样化&#xff0c;他们对于在线学…

【Flink】快速理解 FlinkCDC 2.0 原理

快速理解 FlinkCDC 2.0 原理 要详细理解 Flink CDC 原理可以看看这篇文章&#xff0c;讲得很详细&#xff1a;深入解析 Flink CDC 增量快照读取机制 (https://juejin.cn/post/7325370003192578075)。 FlnkCDC 2.0&#xff1a; Flink 2.x 引入了增量快照读取机制&#xff0c;…

【前端】JavaScript 中 arguments、类数组与数组的深入解析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;什么是 arguments 对象2.1 arguments 的定义2.2 arguments 的特性2.3 使用场景 &#x1f4af;深入了解 arguments 的结构3.1 arguments 的内部结构arguments 的关键属性…

Kubernetes 还是 SpringCloud?

前些年&#xff0c;随着微服务的概念提出以及落地&#xff0c;不断有很多的公司都加入到了这场技术革新中&#xff0c;现在可谓是人人都在做和说微服务。 提到微服务&#xff0c;Java栈内&#xff0c;就不得不提SpringBoot、SpringCloud、Dubbo。 近几年&#xff0c;随着Cloud …

Redis设计与实现 学习笔记 第二十章 Lua脚本

Redis从2.6版本引入对Lua脚本的支持&#xff0c;通过在服务器中嵌入Lua环境&#xff0c;Redis客户端可以使用Lua脚本&#xff0c;直接在服务器端原子地执行多个Redis命令。 其中EVAL命令可以直接对输入的脚本进行求值&#xff1a; 而使用EVALSHA命令则可以根据脚本的SHA1校验…

C# 调用系统级方法复制、移动和删除等操作界面

有时候需要在程序复制、移动、删除文件等操作&#xff0c;虽然实现的方法有很多&#xff0c;但有些时候真的不如系统自带的界面效果来的直接省事。 好了不啰嗦了&#xff0c;直接看代码。这是网上找的&#xff0c;能用&#xff0c;但是有一点bug&#xff0c;有时候第一次复制文…

AI赋能电商:打造高效销售与卓越用户体验的新引擎

在数字经济迅猛发展的今天&#xff0c;电商行业正处于持续演变的关键时期。技术的进步不仅重塑了电商生态的运行方式&#xff0c;也在深刻改变用户的消费习惯。人工智能&#xff08;AI&#xff09;作为现代科技的核心驱动力&#xff0c;为电商平台提供了前所未有的工具和机遇。…

基于机器视觉的表面缺陷检测

基于机器视觉的表面缺陷检测存在的问题与难点 - AVT相机|AVT红外相机|万兆网相机EVT|VIEWORKS线扫相|映美精相机|Specim多光谱相机|Adimec相机|Basler相机|富士能FUJINON镜头|理光RICOH镜头|OPTO远心镜头|SPO远心镜头|Navtar镜头|VST镜头|CCS光源|3D视觉引导机床上下料系统 (完…