实现跨语言通信:Rust 和 Thrift 的最佳实践

news2024/11/27 23:12:48

前言

在分布式系统中,服务之间高效且安全的通信至关重要。Apache Thrift 是一个被广泛应用的跨语言 RPC(远程过程调用)框架,它支持多种编程语言,包括 Rust。Rust 以其卓越的性能和内存安全保障,成为越来越多开发者的首选语言。
本文将深入探讨如何在 Rust 项目中集成 Thrift,帮助开发者实现跨服务的高效通信,并且探讨异步编程和 TLS 安全通信的高级实现方式。

什么是 Thrift?

Thrift 是由 Facebook 开发并开源的一个高效的服务框架。它允许你定义数据类型和服务接口,然后生成跨多种编程语言的代码。简单来说,Thrift 提供了一个统一的接口来实现不同语言之间的通信。

集成步骤

你可以通过以下命令安装 Thrift 编译器:

# For macOS using Homebrew
brew install thrift

# For Ubuntu
sudo apt-get install thrift-compiler

1. 定义 Thrift 文件

首先,你需要定义一个 .thrift 文件,描述你的数据结构和服务接口。创建一个文件 example.thrift:

namespace rs example

struct User {
  1: i32 id,
  2: string name,
  3: i32 age
}

service UserService {
  User getUser(1: i32 id),
  void saveUser(1: User user)
}

这个文件描述了一个 User 结构体和一个 UserService 服务。

2. 生成 Rust 代码

使用 Thrift 编译器生成 Rust 代码:

thrift --gen rs example.thrift

这将会在当前目录下生成一个 gen-rs 目录,里面包含了 Thrift 为 Rust 生成的代码。

3. 在 Rust 项目中使用 Thrift

创建一个新的 Rust 项目:

cargo new rust_thrift_example
cd rust_thrift_example

编辑 Cargo.toml 文件,添加 Thrift 依赖:

[dependencies]
thrift = "0.14.1"

将生成的 gen-rs 文件夹复制到 src 目录下,以便在项目中使用。

接下来,我们编写一个简单的客户端和服务器。

服务器端代码

在 src 目录下创建一个新文件 server.rs,编写服务器端代码:

use thrift::protocol::{TBinaryInputProtocol, TBinaryOutputProtocol};
use thrift::server::{TServer, TSimpleServer};
use thrift::transport::{TBufferedReadTransport, TBufferedWriteTransport, TIoChannel, TTcpChannel, TTcpListener, TTransport};

mod gen_rs {
    pub mod example;
}

use gen_rs::example::{User, UserServiceSyncProcessor};

struct UserServiceHandler;

impl UserServiceSyncProcessor for UserServiceHandler {
    fn getUser(&self, id: i32) -> thrift::Result<User> {
        Ok(User { id, name: format!("User{}", id), age: 30 })
    }

    fn saveUser(&self, user: User) -> thrift::Result<()> {
        println!("User saved: {:?}", user);
        Ok(())
    }
}

fn main() -> thrift::Result<()> {
    let listener = TTcpListener::new("127.0.0.1:9090")?;
    let server = TSimpleServer::new(
        UserServiceHandler,
        TBinaryInputProtocol::new,
        TBinaryOutputProtocol::new,
        TBufferedReadTransport::new,
        TBufferedWriteTransport::new,
        listener,
    );
    println!("Starting the server...");
    server.serve()?;
    Ok(())
}
客户端代码

在 src 目录下创建一个新文件 client.rs,编写客户端代码:

use thrift::protocol::{TBinaryInputProtocol, TBinaryOutputProtocol};
use thrift::transport::{TBufferedReadTransport, TBufferedWriteTransport, TTcpChannel, TTransport};

mod gen_rs {
    pub mod example;
}

use gen_rs::example::{UserServiceSyncClient};

fn main() -> thrift::Result<()> {
    let mut transport = TTcpChannel::new();
    transport.open("127.0.0.1:9090")?;
    let (i_prot, o_prot) = (
        TBinaryInputProtocol::new(TBufferedReadTransport::new(transport.try_clone()?)),
        TBinaryOutputProtocol::new(TBufferedWriteTransport::new(transport)),
    );

    let client = UserServiceSyncClient::new(i_prot, o_prot);

    let user = client.getUser(1)?;
    println!("Got user: {:?}", user);

    client.saveUser(user)?;

    Ok(())
}

4. 运行服务器和客户端

首先,编译并运行服务器:

cargo run --bin server

然后,在另一个终端窗口中运行客户端:

cargo run --bin client

你应该会看到客户端从服务器获取到用户信息并将其保存。

实际应用

在上面的教程中,我们已经成功地实现了一个基础的 Thrift 服务和客户端。但是,在实际应用中,我们可能会遇到更多的需求和挑战。接下来,我们将深入探讨一些常见的需求和解决方案。

异步编程

随着现代应用对性能和并发的要求越来越高,异步编程变得越来越重要。Rust 提供了强大的异步编程支持,我们可以利用这些特性来提升 Thrift 服务的性能。

使用 tokio 和 async 实现异步 Thrift 服务

tokio 是一个用于异步编程的强大框架。我们可以结合 tokio 和 Rust 的 async 特性来实现异步 Thrift 服务。

首先,确保在 Cargo.toml 文件中添加 tokio 依赖:

[dependencies]
thrift = "0.14.1"
tokio = { version = "1", features = ["full"] }

然后,修改服务器端代码以支持异步:
use thrift::protocol::{TBinaryInputProtocol, TBinaryOutputProtocol};
use thrift::server::TServer;
use thrift::transport::{TBufferedReadTransport, TBufferedWriteTransport, TIoChannel, TTcpChannel, TTcpListener};
use tokio::net::TcpListener;
use tokio::sync::Mutex;
use std::sync::Arc;

mod gen_rs {
    pub mod example;
}

use gen_rs::example::{User, UserServiceAsyncProcessor};

struct UserServiceHandler;

#[async_trait::async_trait]
impl UserServiceAsyncProcessor for UserServiceHandler {
    async fn getUser(&self, id: i32) -> thrift::Result<User> {
        Ok(User { id, name: format!("User{}", id), age: 30 })
    }

    async fn saveUser(&self, user: User) -> thrift::Result<()> {
        println!("User saved: {:?}", user);
        Ok(())
    }
}

#[tokio::main]
async fn main() -> thrift::Result<()> {
    let listener = TcpListener::bind("127.0.0.1:9090").await?;
    let handler = Arc::new(Mutex::new(UserServiceHandler));

    loop {
        let (socket, _) = listener.accept().await?;
        let handler = handler.clone();

        tokio::spawn(async move {
            let (i_prot, o_prot) = (
                TBinaryInputProtocol::new(TBufferedReadTransport::new(TTcpChannel::new(socket))),
                TBinaryOutputProtocol::new(TBufferedWriteTransport::new(TTcpChannel::new(socket))),
            );

            let processor = UserServiceAsyncProcessor::new(handler);

            let mut server = TServer::new(i_prot, o_prot, processor);
            server.serve().await.unwrap();
        });
    }
}

在这个示例中,我们使用 tokio::net::TcpListener 来异步监听连接,并使用 tokio::spawn 来处理每个连接,从而实现并发处理。

使用 TLS 加密通信

在生产环境中,安全性是极为重要的考量。我们可以使用 TLS (传输层安全) 来加密 Thrift 服务的通信。

配置 TLS
首先,确保在 Cargo.toml 文件中添加 tokio-rustls 依赖:

[dependencies]
thrift = "0.14.1"
tokio = { version = "1", features = ["full"] }
tokio-rustls = "0.22"
rustls = "0.20"

然后,生成自签名证书或使用受信任的证书。为了简化演示,我们使用自签名证书:
openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

接着,修改服务器端代码以支持 TLS:

use thrift::protocol::{TBinaryInputProtocol, TBinaryOutputProtocol};
use thrift::server::TServer;
use thrift::transport::{TBufferedReadTransport, TBufferedWriteTransport, TIoChannel, TTcpChannel};
use tokio::net::TcpListener;
use tokio::sync::Mutex;
use tokio_rustls::rustls::{ServerConfig, NoClientAuth, Certificate, PrivateKey};
use tokio_rustls::TlsAcceptor;
use tokio_rustls::rustls::internal::pemfile::{certs, rsa_private_keys};
use std::sync::Arc;
use std::fs::File;
use std::io::{BufReader, self};

mod gen_rs {
    pub mod example;
}

use gen_rs::example::{User, UserServiceAsyncProcessor};

struct UserServiceHandler;

#[async_trait::async_trait]
impl UserServiceAsyncProcessor for UserServiceHandler {
    async fn getUser(&self, id: i32) -> thrift::Result<User> {
        Ok(User { id, name: format!("User{}", id), age: 30 })
    }

    async fn saveUser(&self, user: User) -> thrift::Result<()> {
        println!("User saved: {:?}", user);
        Ok(())
    }
}

#[tokio::main]
async fn main() -> thrift::Result<()> {
    let mut config = ServerConfig::new(NoClientAuth::new());
    let cert_file = &mut BufReader::new(File::("cert.pem")?);
    let key_file = &mut BufReader::new(File::open("key.pem")?);
    let cert_chain = certs(cert_file).map_err(|_| io::Error::new(io::ErrorKind::InvalidInput, "invalid cert"))?;
    let mut keys = rsa_private_keys(key_file).map_err(|_| io::Error::new(io::ErrorKind::InvalidInput, "invalid key"))?;
    config.set_single_cert(cert_chain, keys.remove(0)).map_err(|_| io::Error::new(io::ErrorKind::InvalidInput, "invalid key"))?;

    let acceptor = TlsAcceptor::from(Arc::new(config));
    let listener = TcpListener::bind("127.0.0.1:9090").await?;
    let handler = Arc::new(Mutex::new(UserServiceHandler));

    loop {
        let (socket, _) = listener.accept().await?;
        let handler = handler.clone();
        let acceptor = acceptor.clone();

        tokio::spawn(async move {
            let tls_socket = acceptor.accept(socket).await.unwrap();
            let (i_prot, o_prot) = (
                TBinaryInputProtocol::new(TBufferedReadTransport::new(TTcpChannel::new(tls_socket))),
                TBinaryOutputProtocol::new(TBufferedWriteTransport::new(TTcpChannel::new(tls_socket))),
            );

            let processor = UserServiceAsyncProcessor::new(handler);

            let mut server = TServer::new(i_prot, o_prot, processor);
            server.serve().await.unwrap();
        });
    }
}

使用 TLS 的客户端代码类似,只需在创建连接时使用 tokio-rustls 的 TlsConnector 来进行加密连接。

总结

本文详细介绍了如何在 Rust 项目中集成 Apache Thrift,以及如何通过异步编程和 TLS 实现更高效和安全的服务通信。Rust 和 Thrift 的结合为开发者提供了一种可靠的跨语言通信解决方案,能够满足现代分布式系统的高性能和高安全性需求。希望通过本文的教程,开发者能够更好地理解和应用 Rust 和 Thrift,实现高效的分布式系统开发。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248679.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis设计与实现 学习笔记 第二十章 Lua脚本

Redis从2.6版本引入对Lua脚本的支持&#xff0c;通过在服务器中嵌入Lua环境&#xff0c;Redis客户端可以使用Lua脚本&#xff0c;直接在服务器端原子地执行多个Redis命令。 其中EVAL命令可以直接对输入的脚本进行求值&#xff1a; 而使用EVALSHA命令则可以根据脚本的SHA1校验…

C# 调用系统级方法复制、移动和删除等操作界面

有时候需要在程序复制、移动、删除文件等操作&#xff0c;虽然实现的方法有很多&#xff0c;但有些时候真的不如系统自带的界面效果来的直接省事。 好了不啰嗦了&#xff0c;直接看代码。这是网上找的&#xff0c;能用&#xff0c;但是有一点bug&#xff0c;有时候第一次复制文…

AI赋能电商:打造高效销售与卓越用户体验的新引擎

在数字经济迅猛发展的今天&#xff0c;电商行业正处于持续演变的关键时期。技术的进步不仅重塑了电商生态的运行方式&#xff0c;也在深刻改变用户的消费习惯。人工智能&#xff08;AI&#xff09;作为现代科技的核心驱动力&#xff0c;为电商平台提供了前所未有的工具和机遇。…

基于机器视觉的表面缺陷检测

基于机器视觉的表面缺陷检测存在的问题与难点 - AVT相机|AVT红外相机|万兆网相机EVT|VIEWORKS线扫相|映美精相机|Specim多光谱相机|Adimec相机|Basler相机|富士能FUJINON镜头|理光RICOH镜头|OPTO远心镜头|SPO远心镜头|Navtar镜头|VST镜头|CCS光源|3D视觉引导机床上下料系统 (完…

Fakelocation Server服务器/专业版 Windows11

前言:需要Windows11系统 Fakelocation开源文件系统需求 Windows11 | Fakelocation | 任务一 打开 PowerShell&#xff08;以管理员身份&#xff09;命令安装 Chocolatey Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProto…

【Android】View的解析—滑动篇

1.View与ViewGroup View&#xff1a; View是Android中所有UI组件的基类&#xff0c;提供了绘制&#xff08;draw&#xff09;、布局&#xff08;layout&#xff09;和事件处理&#xff08;event handling&#xff09;的基础功能。它是一个抽象类&#xff0c;不能直接实例化&…

极狐GitLab 17.6 正式发布几十项与 DevSecOps 相关的功能【三】

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料&#xff1a; 极狐GitLab 官网极狐…

基于混合ABC和A*算法复现

基于混合ABC和A*算法复现 一、背景介绍二、算法原理&#xff08;一&#xff09;A*算法原理&#xff08;二&#xff09;人工蜂群算法原理&#xff08;三&#xff09;混合ABC和A*算法策略 三、代码实现&#xff08;一&#xff09;数据准备&#xff08;二&#xff09;关键函数实现…

linux运行vue编译后的项目

如果你的 Vue 项目使用了 history 模式&#xff08;而非默认的 hash 模式&#xff09;&#xff0c;在纯静态服务器中会出现类似的问题。因为 Vue Router 的 history 模式要求所有未匹配的路径都重定向到 index.html&#xff0c;以便 Vue 前端处理路径。 首先在本地执行npm run…

模拟实现Bash

模拟实现Bash 1.Bash基本认识2.Bash实现3.添加细节4.内置命令5.完整代码 &#x1f31f;&#x1f31f;hello&#xff0c;各位读者大大们你们好呀&#x1f31f;&#x1f31f; &#x1f680;&#x1f680;系列专栏&#xff1a;【Linux的学习】 &#x1f4dd;&#x1f4dd;本篇内容…

sql注入报错分享(mssql+mysql)

mysql mysql的报错内容比较多 网上也有比较多的 这里重复的就不多介绍了。一笔带过 溢出类 bigint 当超过mysql的整形的时候&#xff0c;就会导致溢出&#xff0c;mysql可能会将错误信息带出。这里user()是字母默认为0 取反以后1可能就会导致异常。 报错特征 BIGINT UNSIG…

Hadoop3.3.6集群安装

Hadoop3.3.6 三节点集群安装 准备工作 准备三台机器&#xff0c;大小为4c8g&#xff0c;主节点为 8c16g。并需要保证网络连通性&#xff0c;每台机器都相互ping一下 1、关闭网络防火墙 # 查看网络防火墙状态 sudo systemctl status firewalld # 立即停止 firewalld sudo sy…

如何制作项目网页

一、背景 许多论文里经常会有这样一句话Supplementary material can be found at https://hri-eu.github.io/Lami/&#xff0c;这个就是将论文中的内容或者补充视频放到一个网页上&#xff0c;以更好的展示他们的工作。因此&#xff0c;这里介绍下如何使用前人提供的模板制作我…

JVM调优篇之JVM基础入门AND字节码文件解读

目录 Java程序编译class文件内容常量池附录-访问标识表附录-常量池类型列表 Java程序编译 Java文件通过编译成class文件后&#xff0c;通过JVM虚拟机解释字节码文件转为操作系统执行的二进制码运行。 规范 Java虚拟机有自己的一套规范&#xff0c;遵循这套规范&#xff0c;任…

已存大量数据的mysql库实现主从各种报错----解决方案(看评论)

背景何谓“先死后生”本文使用技术1、实施流程图2、实施2.1、数据库备份2.2、搭建Mysql的Master-Slave2.2.1、准备工作2.2.2、开始部署2.2.3、账号配置2.2.4、slave 同步配置2.2.5、验证 2.3、Master做数据恢复 结语 背景 计划对已有大量数据的mysql库的主从搭建&#xff0c;使…

数据结构 【双向哨兵位循环链表】

链表的结构分为8中&#xff0c;其实搞懂了单链表和双向哨兵位循环链表&#xff0c;这部分的知识也就掌握的差不多了。双向哨兵位循环链表的结构如下&#xff1a; 下面我从0构建一个双向哨兵位循环链表。 1、准备工作 构建节点结构体&#xff0c;双向循环链表的每一个…

高级AI记录笔记(五)

学习位置 B站位置&#xff1a;红豆丨泥 UE AI 教程原作者Youtube位置&#xff1a;https://youtu.be/-t3PbGRazKg?siRVoaBr4476k88gct素材自备 改良近战AI格挡行为 把近战AI的格挡行为从行为树中单独一个任务分块中给删除掉&#xff0c;因为我们希望敌人在受到伤害后立即进行…

彻底解决 macOS 下Matplotlib 中文显示乱码问题

彻底解决 macOS 下Matplotlib 中文显示乱码问题 在使用 Python 的 Matplotlib 库进行数据可视化时&#xff0c;中文字符的显示常常会出现乱码问题&#xff0c;尤其在 macOS 系统上。在网上找了一大堆方法&#xff0c;花了很久&#xff0c;发现不是要安装各种字体就是要改配置&…

11.25.2024刷华为OD

文章目录 HJ76 尼科彻斯定理&#xff08;观察题&#xff0c;不难&#xff09;HJ77 火车进站&#xff08;DFS&#xff09;HJ91 走格子方法&#xff0c;&#xff08;动态规划&#xff0c;递归&#xff0c;有代表性&#xff09;HJ93 数组分组&#xff08;递归&#xff09;语法知识…

突破性算法:让无人机集群在狭窄空间内穿针引线

导读 在建筑救援、森林搜索等任务中&#xff0c;无人机集群经常会遇到狭窄空间限制和动态障碍物变化等挑战。这些挑战会导致集群内部冲突&#xff0c;或在执行任务时因避让动态障碍物而导致系统混乱。实际应用场景和任务的严格特征往往使得全局搜索难以优化&#xff0c;而局部避…