Kafka 数据倾斜:原因、影响与解决方案

news2024/11/27 22:41:17


Kafka:分布式消息系统的核心原理与安装部署-CSDN博客

自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客

Kafka 生产者全面解析:从基础原理到高级实践-CSDN博客

Kafka 生产者优化与数据处理经验-CSDN博客

Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化-CSDN博客

Kafka 消费者全面解析:原理、消费者 API 与Offset 位移-CSDN博客

Kafka 分区分配及再平衡策略深度解析与消费者事务和数据积压的简单介绍-CSDN博客

Kafka 数据倾斜:原因、影响与解决方案-CSDN博客

Kafka 核心要点解析_kafka mirrok-CSDN博客

Kafka 核心问题深度解析:全面理解分布式消息队列的关键要点_kafka队列日志-CSDN博客

目录

一、数据倾斜的概念

二、数据倾斜产生的原因

(一)生产者端原因

分区键(Partition Key)选择不当

消息发送不均匀

(二)消费者端原因

消费者处理能力差异

消费者数量与分区数量不匹配

三、数据倾斜带来的问题

(一)降低消费者处理效率

部分消费者过载

资源浪费

(二)影响数据准确性和完整性

数据处理不一致

数据丢失风险

四、数据倾斜的解决策略

(一)生产者端策略

优化分区键选择

自定义分区策略

(二)消费者端策略

动态调整消费者数量和分区分配

优化消费者处理逻辑

五、总结


        在大数据处理领域,Kafka 作为一款高性能的分布式消息队列系统,被广泛应用于数据传输、实时流处理等场景。然而,在使用 Kafka 的过程中,数据倾斜问题可能会悄然出现,影响系统的性能和数据处理的准确性。本文将深入探讨 Kafka 数据倾斜的概念、产生原因、带来的问题以及相应的解决策略,帮助读者更好地应对这一挑战。

一、数据倾斜的概念

        在 Kafka 环境中,数据倾斜是指数据在主题(Topic)的各个分区(Partition)之间分布不均匀的状况。理想情况下,分区设计期望数据能在各个分区均衡分布,如此一来,消费者组内的消费者便可均衡地从不同分区消费数据,从而充分利用系统资源实现高效并行处理。但当数据倾斜发生时,部分分区会承载大量数据,而其他分区的数据量则相对较少。

二、数据倾斜产生的原因

(一)生产者端原因

分区键(Partition Key)选择不当


        当生产者向 Kafka 发送消息时,若分区策略基于分区键的哈希值确定消息所属分区,而分区键选择不合理,就可能引发数据倾斜。例如在电商系统中,若以商品类别作为分区键,某热门商品类别(如智能手机)的订单消息远超其他类别,对应分区的数据量就会远大于其他分区。

消息发送不均匀


        生产者的业务逻辑可能导致消息发送不均匀。比如在数据采集系统中,某些数据源产生数据的频率远高于其他数据源,且未对数据进行合理分发处理,就会使数据集中发送到少数几个分区。

(二)消费者端原因

消费者处理能力差异


        消费者组内各消费者处理能力不同。若部分消费者处理消息速度慢,而 Kafka 的分配策略未及时调整,就可能导致数据在某些分区堆积,产生数据倾斜。例如在复杂数据处理场景中,某些消费者需进行复杂计算或外部服务调用,导致处理速度下降,而其他消费者能快速处理消息,使得分配给处理速度慢的消费者的分区数据堆积。

消费者数量与分区数量不匹配


        当消费者组内消费者数量与主题分区数量比例不合适时,也可能引发数据倾斜。比如消费者数量远少于分区数量,每个消费者可能分配到多个分区,若部分消费者因故障或性能问题无法正常消费分配的所有分区,就会导致这些分区的数据不能及时处理,出现数据倾斜。

三、数据倾斜带来的问题

(一)降低消费者处理效率

部分消费者过载


        当某些分区数据量过大时,负责消费这些分区的消费者会承受较大负载,可能导致处理速度跟不上消息生产速度,出现消息积压,影响整个系统的实时性。例如在实时流数据处理系统中,数据倾斜可能使部分消费者需处理大量数据,无法及时完成处理,导致后续数据分析和决策环节延迟。

资源浪费


        同时,其他消费者可能因分配到的数据量过少而处于空闲状态,造成系统资源浪费。例如在集群环境中,部分计算节点上的消费者因数据量少未充分利用计算资源,而其他节点上的消费者因数据过多性能下降。

(二)影响数据准确性和完整性

数据处理不一致

        数据倾斜可能导致不同消费者处理的数据量差异过大,影响数据处理的一致性。例如在机器学习模型训练系统中,数据倾斜可能使部分模型使用的数据量远多于其他模型,导致模型训练结果出现偏差,影响数据准确性。

数据丢失风险


        在极端情况下,当数据倾斜导致部分分区数据积压过多,而消费者又无法及时处理时,可能出现数据过期或被删除的情况,造成数据丢失,影响数据完整性。

四、数据倾斜的解决策略

(一)生产者端策略

优化分区键选择


        重新评估分区键的选择,确保分区键能使数据均匀分布。如在电商系统中,可考虑使用订单 ID 作为分区键,而非商品类别,这样可使订单消息更均匀地分布在各个分区,避免因热门商品类别导致的数据倾斜。

自定义分区策略


        除了默认分区策略,生产者可根据业务需求自定义分区策略。例如可根据数据的时间戳、地域等多种因素分配消息到不同分区,以实现数据的均衡分布。

(二)消费者端策略

动态调整消费者数量和分区分配


        根据消费者处理能力和分区数据量,动态调整消费者数量和分区分配。例如当发现部分分区数据积压时,可增加消费者数量分担这些分区的消费任务。同时可使用 Kafka 提供的分区分配策略(如 Round - RobinAssignor、StickyAssignor 等)并根据实际情况优化,确保数据在消费者之间均衡分配。

优化消费者处理逻辑


        对消费者处理逻辑进行优化,提高处理效率,减少因处理能力差异导致的数据倾斜。例如对处理速度较慢的消费者,可对其处理逻辑进行性能优化,如减少不必要的数据库查询、优化算法等,使其能更快地处理消息。

五、总结

        Kafka 数据倾斜是在实际应用中可能遇到的重要问题,它会对系统性能、数据准确性和完整性产生多方面的负面影响。通过深入理解数据倾斜产生的原因,我们能够有针对性地采取生产者端和消费者端的策略来解决这一问题。在实际的 Kafka 应用开发和运维过程中,持续监控数据分布情况,及时发现并处理数据倾斜问题,对于构建高效、稳定、准确的数据处理系统至关重要。希望本文能为广大 Kafka 用户在应对数据倾斜问题时提供有益的参考和指导,让大家能够更好地发挥 Kafka 在大数据处理中的强大作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248664.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux运行vue编译后的项目

如果你的 Vue 项目使用了 history 模式(而非默认的 hash 模式),在纯静态服务器中会出现类似的问题。因为 Vue Router 的 history 模式要求所有未匹配的路径都重定向到 index.html,以便 Vue 前端处理路径。 首先在本地执行npm run…

模拟实现Bash

模拟实现Bash 1.Bash基本认识2.Bash实现3.添加细节4.内置命令5.完整代码 🌟🌟hello,各位读者大大们你们好呀🌟🌟 🚀🚀系列专栏:【Linux的学习】 📝📝本篇内容…

sql注入报错分享(mssql+mysql)

mysql mysql的报错内容比较多 网上也有比较多的 这里重复的就不多介绍了。一笔带过 溢出类 bigint 当超过mysql的整形的时候,就会导致溢出,mysql可能会将错误信息带出。这里user()是字母默认为0 取反以后1可能就会导致异常。 报错特征 BIGINT UNSIG…

Hadoop3.3.6集群安装

Hadoop3.3.6 三节点集群安装 准备工作 准备三台机器,大小为4c8g,主节点为 8c16g。并需要保证网络连通性,每台机器都相互ping一下 1、关闭网络防火墙 # 查看网络防火墙状态 sudo systemctl status firewalld # 立即停止 firewalld sudo sy…

如何制作项目网页

一、背景 许多论文里经常会有这样一句话Supplementary material can be found at https://hri-eu.github.io/Lami/,这个就是将论文中的内容或者补充视频放到一个网页上,以更好的展示他们的工作。因此,这里介绍下如何使用前人提供的模板制作我…

JVM调优篇之JVM基础入门AND字节码文件解读

目录 Java程序编译class文件内容常量池附录-访问标识表附录-常量池类型列表 Java程序编译 Java文件通过编译成class文件后,通过JVM虚拟机解释字节码文件转为操作系统执行的二进制码运行。 规范 Java虚拟机有自己的一套规范,遵循这套规范,任…

已存大量数据的mysql库实现主从各种报错----解决方案(看评论)

背景何谓“先死后生”本文使用技术1、实施流程图2、实施2.1、数据库备份2.2、搭建Mysql的Master-Slave2.2.1、准备工作2.2.2、开始部署2.2.3、账号配置2.2.4、slave 同步配置2.2.5、验证 2.3、Master做数据恢复 结语 背景 计划对已有大量数据的mysql库的主从搭建,使…

数据结构 【双向哨兵位循环链表】

链表的结构分为8中,其实搞懂了单链表和双向哨兵位循环链表,这部分的知识也就掌握的差不多了。双向哨兵位循环链表的结构如下: 下面我从0构建一个双向哨兵位循环链表。 1、准备工作 构建节点结构体,双向循环链表的每一个…

高级AI记录笔记(五)

学习位置 B站位置:红豆丨泥 UE AI 教程原作者Youtube位置:https://youtu.be/-t3PbGRazKg?siRVoaBr4476k88gct素材自备 改良近战AI格挡行为 把近战AI的格挡行为从行为树中单独一个任务分块中给删除掉,因为我们希望敌人在受到伤害后立即进行…

彻底解决 macOS 下Matplotlib 中文显示乱码问题

彻底解决 macOS 下Matplotlib 中文显示乱码问题 在使用 Python 的 Matplotlib 库进行数据可视化时,中文字符的显示常常会出现乱码问题,尤其在 macOS 系统上。在网上找了一大堆方法,花了很久,发现不是要安装各种字体就是要改配置&…

11.25.2024刷华为OD

文章目录 HJ76 尼科彻斯定理(观察题,不难)HJ77 火车进站(DFS)HJ91 走格子方法,(动态规划,递归,有代表性)HJ93 数组分组(递归)语法知识…

突破性算法:让无人机集群在狭窄空间内穿针引线

导读 在建筑救援、森林搜索等任务中,无人机集群经常会遇到狭窄空间限制和动态障碍物变化等挑战。这些挑战会导致集群内部冲突,或在执行任务时因避让动态障碍物而导致系统混乱。实际应用场景和任务的严格特征往往使得全局搜索难以优化,而局部避…

Python中的简单爬虫

文章目录 一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务器和浏览器的通讯流程3. 浏览器访问Web服务器的通讯流程4. 加载图片资源代码 二. 基于Web请求的FastAPI通用配置1. 目前Web服务器存在问题2. 基于Web请求的FastAPI通用配置 三. Python爬虫介绍1. 什…

【Shell】运维快捷键及shell各种不同实际运维场景

一,控制台使用技巧 1,操作快捷键 Ctrlr :可以快速查找历史命令 Ctrll :可以清理控制台屏幕 Ctrla \ Ctrle :移动光标到命令行首\行尾 Ctrlw \ Ctrlk :删除光标之前\之后的内容 2,VIM文件编辑快捷键 快捷键ZZ :文件保存并退出 3&#xff…

SlickGrid复选框

分析 1、先在columns首列添加复选框; 2、在SlickGrid注册刚添加的复选框; 3、添加复选框变化事件; 4、注册按钮点击事件,点击获取已选中的行。 展示 代码 复选框样式(CSS) .slick-cell-checkboxsel {bac…

基于单片机的智慧小区人脸识别门禁系统

本设计基于单片机的智慧小区人脸识别门禁系统。由STM32F103C8T6单片机核心板、显示模块、摄像头模块、舵机模块、按键模块和电源模块组成。可以通过摄像头模块对进入人员人脸数据进行采集,识别成功后,舵机模块动作,模拟门禁打开,门…

【小白学机器学习33】 大数定律python的 pandas.Dataframe 和 pandas.Series基础内容

目录 0 总结 0.1pd.Dataframe有一个比较麻烦琐碎的地方,就是引号 和括号 0.2 pd.Dataframe关于括号的原则 0.3 分清楚几个数据类型和对应的方法的范围 0.4 几个数据结构的构造关系 list → np.array(list) → pd.Series(np.array)/pd.Dataframe 1 python 里…

Edge浏览器保留数据,无损降级退回老版本+禁止更新教程(适用于Chrome)

3 个月前阿虚就已经写文章告警过大家,Chromium 内核的浏览器将在 127 以上版本开始限制仍在使用 Manifest V2 规范的扩展:https://mp.weixin.qq.com/s/v1gINxg5vMh86kdOOmqc6A 像是 IDM、油猴脚本管理器、uBblock 等扩展都会受到影响,后续将无…

基于Spring Boot的装饰工程管理系统论文

摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统装饰工程项目信息管理难度大,容错率低&#x…

路由器的工作原理

网络拓扑结构 主机A: IP地址:10.1.0.1/16 MAC地址:MACA 主机B: IP地址:10.2.0.1/16 MAC地址:MACB 网关G0/0/0: IP地址:10.1.0.2/16 MAC地址:MACC 网关G0/0/1&#…