RL78/G15 Fast Prototyping Board Arduino IDE 平台开发过程

news2024/11/27 16:30:46

这是一篇基于RL78/G15 Fast Prototyping Board的Arduino IDE开发记录

  • RL78/G15 Fast Prototyping Board
    • 硬件简介(背景)
    • 基础测试(方法说明/操作说明)
    • 开发环境搭建(方法说明/操作说明+代码+结果)
      • Arduino IDE RL78/G15的拉取方法:
        • (1)文件--首选项--
        • (2)工具--开发板--开发板管理器--关键字“RL”--搜索并安装RL78/G15-20p…
        • (3)给硬件上电,设备管理器获取串口
        • (4)工具--端口--选择硬件端口--选择设备管理器中新增的串口COMxx
        • (5)工具--选择开发板--选择RL78/G15...
        • (6)文件--示例
    • 通用示例测试(方法说明/操作说明+代码+结果)
    • 测评ADC任务功耗
      • 进行ADC基础实验
      • 进行功耗测试实验
    • 心得体会
    • 引用

RL78/G15 Fast Prototyping Board

硬件简介(背景)

RL78/G15 快速原型开发板配备 RL78/G15 微控制器,是一种专门用于各种应用开发试产的原型开发板。 它只需连接 USB 线即可编写/调试程序,无需任何其他工具即可着手评估。 此外,它还可以使用传统 E2 仿真器和 E2 仿真器 Lite 实现高性能调试(有关方法,请参考用户手册)。 标配 Arduino Uno 和 Pmod™ 接口,具有高度的可扩展性,譬如能够访问微控制器的所有引脚。1

可以在RL78/G15快速入门指南下载对应的快速入门指南,这里有硬件相关的一些内容,也是测评前对硬件必须要的基础的了解:
在这里插入图片描述
在这里插入图片描述
可以看到,RL78/G15 Fast Prototyping Board是沿用基于Arduino的布局风格,甚至于引脚和UNO-R3是完全兼容的,所以,可以替代R3作为基板对以前的模块开发进行快速功能验证。
在这里插入图片描述
更多的,硬件上,RL78/G15 Fast Prototyping Board设计了PMOD接口,用户可以根据这个接口设计不同的模块来快速接入,和测试,弥补了UNO-R3方式开发杜邦线接来接去的困恼!可以看到PMOD涵盖了SPI/IIC/UART多种通信协议,几乎可以通用所有的模块设计,除了用户自己按着引脚开发拓展套件外,也期待一下后续RENESAS官方的设计和扩展这个系列的模组板。

基础测试(方法说明/操作说明)

拿到开发板之后,首先还是需要对关键的电源引脚进行简单测试,避免因为SMT生产过程中产生连锡等,造成短路,特别是VCC和GND,推荐使用万用表短路档进行测试:
在这里插入图片描述
测试均无SMT不良等现象产生时,可以允许接入个人电脑中。这一个步骤是非常关键的——特别是对于USB-HUB没有隔离硬件的时候,如果出现PWR-GND短路现象,是非常容易产生不可挽回的损失的。

在对硬件进行检查时,更多的或许需要依赖硬件原理图进行,对应的原理图等PCB设计文档下载链接:RL78/G15 Fast Prototyping Board Design and Gerber Files

当然为了方便调试,这里直接提供PNG格式的原理图供快速查看:
在这里插入图片描述
在这里插入图片描述

开发环境搭建(方法说明/操作说明+代码+结果)

本次选择的开发环境是Arduino IDE 1.8.19,(当然也可以使用RENCESAS官方原生的开发环境,官方开发环境中也可以对RL78/G15进行开发)。
在这里插入图片描述
为了避免环境太高导致无法适配GITHUB开源的项目库,推荐使用1.8.19版本,笔者是在Windows Store商店直接下载的,也可以到链接Arduino IDE下载(注意:历史版本需要往下拉,下方会提供以往的版本共给用户下载,其中右上角可以选择对应的系统环境):
在这里插入图片描述
完成IDE平台软件的安装后,可以进行RENESAS系列板项目库拉取,其链接:RENESAS系列板项目库,在这个项目库中,可以选择合适的板子进行URL拉取,其中本次测评RL78/G15,因此选择RL78/G15 boards manager URL进行拉取。

在这里插入图片描述

Arduino IDE RL78/G15的拉取方法:

(1)文件–首选项–

将上述链接添加到附加开发板管理器网址中
(如果不会获取,可以拷贝此处链接:RL78/G15 boards manager URL)
在这里插入图片描述

(2)工具–开发板–开发板管理器–关键字“RL”–搜索并安装RL78/G15-20p…

在这里插入图片描述
如果发生下列错误,解决方法是手动下载工具存档(可以从包索引文件中提取存档下载URL),然后将其放入开发板管理器的下载缓存中。在这里插入图片描述

比如WINDOW系统,手动下载后,放置在arduino IDE的缓存文件夹下,参考C:\Users<用户名>\AppData\Local\Arduino15\packages,如果更改了,也是在类似的地址,将zip放置在该文件夹中,可以跳过IDE联网下载环节,进入解压安装环节。

如果手动都下不了的朋友,请从这里获取:
Library-rl78g15-fpb-1.2.1.zip
llvm-17.0.1.202406-rl78-elf.zip
win32-tool-rl78g1x-1.1.0.zip

(3)给硬件上电,设备管理器获取串口

在这里插入图片描述

(4)工具–端口–选择硬件端口–选择设备管理器中新增的串口COMxx

在这里插入图片描述

(5)工具–选择开发板–选择RL78/G15…

在这里插入图片描述

(6)文件–示例

打开示例后,会发现,没有示例!
在这里插入图片描述
但是这就是兼容UNO的,所以,UNO能用的,RL78/G15全部映射完成了(当用户安装完成(Library-rl78g15-fpb-1.2.1.zip)之后),因此,可以直接使用内置示例进行开发使用即可。
在这里插入图片描述

通用示例测试(方法说明/操作说明+代码+结果)

从原理图中,可以知道:
LED1—P20—PIN7
LED2—P21—PIN4
在这里插入图片描述
话不多说,直接上代码:

const int LED1Pin = 7;
const int LED2Pin = 4;

void setup() {
  // put your setup code here, to run once:
  pinMode(LED1Pin, OUTPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  digitalWrite(LED1Pin, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(500);                       // wait for a second
  digitalWrite(LED1Pin, LOW);    // turn the LED off by making the voltage LOW
  delay(500);                       // wait for a second
}

在Arduino IDE中进行验证,上传,注意等待,不要cao之过急:
在这里插入图片描述
等待烧录进去Write Complete 时,即可观察实验现象:
请添加图片描述
对应现象:可以看到LED1每隔1000ms进行一次闪烁,这里故意定义了两个LED,但是只使用其中一个,以说明LED的映射是正确的。

拓展代码:

const int LED2Pin = 4;

void setup() {
  // put your setup code here, to run once:
  pinMode(LED1Pin, OUTPUT);
  pinMode(LED2Pin, OUTPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  digitalWrite(LED1Pin, HIGH);   // turn the LED on (HIGH is the voltage level)
  digitalWrite(LED2Pin, LOW);
  delay(500);                       // wait for a second
  digitalWrite(LED1Pin, LOW);    // turn the LED off by making the voltage LOW
  digitalWrite(LED2Pin, HIGH);
  delay(500);                       // wait for a second
}

对应现象:LED1和LED2进行交替闪烁
请添加图片描述

测评ADC任务功耗

进行ADC基础实验

接下来开始,编写ADC相关的部分,ADC,模数转换,使用到相关的Analog引脚。直接上代码:

#include <Arduino.h>
const int analogInPin = A0; // A0---P23定义模拟输入引脚
int adcValue = 0; // 存储模拟输入的值
float voltage = 0;

void setup() {
  // put your setup code here, to run once:
  Serial.begin(115200);

}

void loop() {
  // put your main code here, to run repeatedly:
  adcValue = analogRead(analogInPin); // 读取模拟输入的值
  voltage = adcValue * (5.0 / 1023.0); // 将模拟输入的值转换为电压值
   // 打印输出
  Serial.print("sensor = ");
  Serial.print(adcValue);
  Serial.print("\t vol = ");
  Serial.print(voltage);
  Serial.println("V");
  delay(2); // 延迟2毫秒

}

在这里插入图片描述
对应的实物,如上图连接。将A0探测脚,连接到板载的3V3引脚上,观察实验输出:

在这里插入图片描述
可以看到,在未进行校准时,输出接近3V3。
在这里插入图片描述

接下来将测量输入引脚,接到我们开源的一款LDO载板上,观察+1V8的采集:
在这里插入图片描述
同样的,将测量输入引脚,接到我们开源的一款LDO载板上,观察+3V3的采集:
在这里插入图片描述
显然的,板载的3V3输出比模块板的LDO要稳定得多。

进行功耗测试实验

本实验使用到电流表,这里使用DMM6500作为电流表,接线图如下图所示,将DCI作为电流表,连接到电路系统供电路中,进行功耗测试,单独采集板载3V3时,观察其整板功耗:(使用DMM6500 DCI档位,测低端采样电流)
在这里插入图片描述
在这里插入图片描述
从采集数据中,可以看到,上电后,单通道ADC任务,整体功耗16mA@5V,包含板载其他器件(LED等)。
在这里插入图片描述
取区间80s到100s,放大可以看到,整体的功耗波动也非常平稳。

心得体会

再次感谢瑞萨嵌入式小百科公众号的测评名额,本文中,主要使用了Arduino IDE对RL78/G15进行环境搭建与开发。在开发过程中,实际上比较苦恼语言问题,在github中大多数的讲解说明都是以日本语作为主要语言,并且在官网中,关于Arduino IDE平台的基础示例几乎没有。在深度了解后,惊然发现,Renesas官方在Arduino IDE库中几乎对所支持的Arduino系列的Renesas板子如RL78/G15等,几乎所有适配的引脚都进行了高度映射,几乎完美兼容原生UNO的所有函数和API。

实际上,在官网中,也有关于Arduino API从e2studio到Arduino IDE的移植指南:
在这里插入图片描述
在这里插入图片描述
最后,比较让我意外的是,RL78/G15即使使用Arduino IDE平台的高度封装的语言,也在ADC寻常模式应用时可以保持如此低的功耗,并且可以将模块LDO的纹波都可以采集到,说明其采样精度和稳定性也非常高。

下一步计划是配置多通道ADC,采集外部多路电压,并且调度MCU进入低功耗模式,搭建系统,相信这RL78/G15 20P一定会给我带来惊喜。

本文就到此完成,喜欢关注我,我会持续更新RL78/G15的使用!

引用


  1. RL78/15G官网首页 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248523.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Servlet细节

目录 1 Servlet 是否符合线程安全&#xff1f; 2 Servlet对象的创建时间&#xff1f; 3 Servlet 绑定url 的写法 3.1 一个Servlet 可以绑定多个url 3.2 在web.xml 配置文件中 url-pattern写法 1 Servlet 是否符合线程安全&#xff1f; 答案&#xff1a;不安全 判断一个线程…

使用UE5.5的Animator Kit变形器

UE5.5版本更新了AnimatorKit内置插件&#xff0c;其中包含了一些内置变形器&#xff0c;可以辅助我们的动画制作。 操作步骤 首先打开UE5.5&#xff0c;新建第三人称模板场景以便测试&#xff0c;并开启AnimatorKit组件。 新建Sequence&#xff0c;放入测试角色 点击角色右…

【前端】ES6基础

1.开发工具 vscode地址 :https://code.visualstudio.com/download, 下载对应系统的版本windows一般都是64位的 安装可以自选目录&#xff0c;也可以使用默认目录 插件&#xff1a; 输入 Chinese&#xff0c;中文插件 安装&#xff1a; open in browser&#xff0c;直接右键文件…

蓝桥杯模拟题不知名题目

题目:p是一个质数&#xff0c;但p是n的约数。将p称为是n的质因数。求2024最大质因数。 #include<iostream> #include<algorithm> using namespace std; bool fun(int x) {for(int i 2 ; i * i < x ; i){if(x % i 0)return false;}return true; } int main() …

Android 13 编译Android Studio版本的Launcher3

Android 13 Aosp源码 源码版本 Android Studio版本 Launcher3QuickStepLib (主要代码) Launcher3ResLib(主要资源) Launcher3IconLoaderLib(图片加载&#xff0c;冲突资源单独新建) 需要值得注意的是&#xff1a; SystemUISharedLib.jar 有kotlin和java下的&#xff0c;在 Lau…

VMware ubuntu创建共享文件夹与Windows互传文件

1.如图1所示&#xff0c;点击虚拟机&#xff0c;点击设置&#xff1b; 图1 2.如图2所示&#xff0c;点击选项&#xff0c;点击共享文件夹&#xff0c;如图3所示&#xff0c;点击总是启用&#xff0c;点击添加&#xff1b; 图2 图3 3.如图4所示&#xff0c;出现命名共享文件夹…

零地址挂页

零地址 如果我们有比较好的C编程基础&#xff0c;我们就会知道&#xff0c;我们在代码中定义了一个零地址或者空指针&#xff0c;那么它实际上会指向虚拟内存的零地址&#xff0c;多数操作系统&#xff0c;包括Win&#xff0c;在进程创建的时候&#xff0c;都会空出前64k的空间…

oneplus6线刷、trwp、magisk(apatch)、LSPosed、Shamiko、Hide My Applist

oneplus6线刷android10.0.1 oneplus6线刷包(官方android10.0.1)下载、线刷教程&#xff1a; OnePlus6-brick-enchilada_22_K_52_210716_repack-HOS-10_0_11-zip 启用开发者模式 设置 / 连续点击6次版本号 : 启用开发者模式设置/开发者模式/{打开 usb调试, 打开 网络adb调试,…

树---索引的进化--从二叉搜索树到B+Tree的光荣进化(未完)

平衡二叉树 1. 索引平衡二叉树&#xff08;AVL树&#xff09;是一种自平衡的二叉搜索树&#xff0c;它通过在插入和删除节点时自动调整树的结构&#xff0c;保持树的平衡&#xff0c;从而保证了树的高度始终保持在O(log n)的范围内&#xff0c;这对于提高搜索、插入和删除操作…

FileZilla 报错解决

一、错误:严重错误: 无法连接到服务器 解决方法&#xff1a;FileZilla站点的用户名密码要和linux用户名密码保持一致&#xff0c;出现这个报错大概率是用户名和密码不一致导致的。 二、错误&#xff1a;文件传输失败 解决方法&#xff1a;检查linux下的文件夹是否有可执行权限…

替代Postman ,17.3K star!

现在&#xff0c;许多人都朝着全栈工程师的方向发展&#xff0c;API 接口的编写和调试已成为许多开发人员必备的技能之一。 工欲善其事&#xff0c;必先利其器。拥有一款优秀的 API 工具对于任何工程师来说都是极为重要的&#xff0c;它能够帮助我们高效地完成各种开发任务。 …

Flutter 3.24.5安装配置——2024年11月26日

目录 1️⃣前置安装使用环境配置步骤安装Flutter SDK安装Android SDK修改文件默认安装位置&#xff08;.gradle, AVD&#xff09;开始项目 2️⃣执行结果&#x1fab2;Bug找不到**.jar文件 &#x1f517;参考链接 1️⃣前置安装 使用环境 Windows 11IDEA 2024.2.3Flutter 3.2…

Perforce SAST专家详解:自动驾驶汽车的安全与技术挑战,Klocwork、Helix QAC等静态代码分析成必备合规性工具

自动驾驶汽车安全吗&#xff1f;现代汽车的软件包含1亿多行代码&#xff0c;支持许多不同的功能&#xff0c;如巡航控制、速度辅助和泊车摄像头。而且&#xff0c;这些嵌入式系统中的代码只会越来越复杂。 随着未来汽车的互联程度越来越高&#xff0c;这一趋势还将继续。汽车越…

(计算机组成原理)期末复习

第一章 计算机的基本组成&#xff1a;硬件软件&#xff08;程序&#xff09;计算机系统 软件有系统软件&#xff08;系统管理工具&#xff09;&#xff0c;应用软件 计算机硬件&#xff1a;包括主机和外设&#xff0c;主机包括CPU和内存&#xff0c;***CPU由运算器和控制器所组…

UEFI 中的 Protocol

Protocol 在 UEFI 内核中的表示 typedef VOID *EFI_HANDLE;EFI_HANDLE是指向某种对象的指针&#xff0c;UEFI 用它来表示某个对象。 UEFI 扫描总线后&#xff0c;会为每个设备建立一个 Controller 对象&#xff0c;用于控制设备&#xff0c;所有该设备的驱动以 Protocol 的形式…

量子安全与经典密码学:一些现实方面的讨论

量子安全与经典密码学 背景&#xff1a;量子安全与经典密码学量子计算对传统密码学的威胁 安全性分析经典密码学的数学复杂性假设**量子密码学的物理不可克隆性假设** **性能与实现难度**后量子算法在经典计算机上的运行效率**量子通信设备的技术要求与成本** **可扩展性与适用…

【大模型】LLaMA-Factory的环境配置、微调模型与测试

前言 【一些闲扯】 时常和朋友闲聊&#xff0c;时代发展这么快&#xff0c;在时代的洪流下&#xff0c;我们个人能抓住些什么呢。我问了大模型&#xff0c;文心一言是这样回答的&#xff1a; 在快速发展的时代背景下&#xff0c;个人确实面临着诸多挑战&#xff0c;但同时也充满…

PostgreSQL的学习心得和知识总结(一百五十八)|在线调优工具pgtune的实现原理和源码解析

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…

汽车渲染领域:Blender 和 UE5 哪款更适用?两者区别?

在汽车渲染领域&#xff0c;选择合适的工具对于实现高质量的视觉效果至关重要。Blender和UE5&#xff08;Unreal Engine 5&#xff09;作为两大主流3D软件&#xff0c;各自在渲染动画方面有着显著的差异。本文将从核心定位与用途、工作流程、渲染技术和灵活性、后期处理与合成四…

机器学习—迁移学习:使用其他任务中的数据

对于一个没有那么多数据的应用程序&#xff0c;迁移学习是一种奇妙的技术&#xff0c;它允许你使用来自不同任务的数据来帮助你的应用程序&#xff0c;迁移学习是如何工作的&#xff1f; 以下是迁移学习的工作原理&#xff0c;假设你想识别手写的数字0到9&#xff0c;但是你没…