241125学习日志——[CSDIY] [InternStudio] 大模型训练营 [17]

news2024/11/26 20:32:16

CSDIY:这是一个非科班学生的努力之路,从今天开始这个系列会长期更新,(最好做到日更),我会慢慢把自己目前对CS的努力逐一上传,帮助那些和我一样有着梦想的玩家取得胜利!!!
第一弹:Cpp零基础学习【30 DAYS 从0到1】
第二弹:Cpp刷题文档【LeetCode】
第三弹:Go开发入门【字节后端青训营】
第四弹:Cpp简单项目开发【黑马Rookie】
第五弹:数据结构绪论【数据结构与算法】
第六弹:Go工程实践【字节后端青训营】
第七弹:高质量编程和性能调优【字节后端青训营】
第八弹:Linux 基础知识【书生大模型训练营】
第九弹:Python 基础知识【书生大模型训练营】
第十弹:Git 基础知识【书生大模型训练营】
第十一弹:玩转HF/魔搭/魔乐社区【书生大模型训练营】
第十二弹:书生大模型全链路开源体系【书生大模型训练营】
第十三弹:玩转书生「多模态对话」与「AI搜索」产品【书生大模型训练营】
第十四弹:浦语提示词工程实践【书生大模型训练营】
第十五弹:HTTP 框架修炼之道【字节后端青训营】
第十六弹:打开抖音会发生什么【字节后端青训营】
第十七弹:将我的服务开放给用户【字节后端青训营】
第十八弹:InternLM + LlamaIndex RAG 实践【书生大模型训练营】

第4关L1G4000InternLM + LlamaIndex RAG 实践

1. 前置知识

正式介绍检索增强生成(Retrieval Augmented Generation,RAG)技术以前,大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。 第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。 第二种方式,并不改变模型的权重,只是给模型引入格外的信息。类比人类编程的过程,第一种方式相当于你记住了某个函数的用法,第二种方式相当于你阅读函数文档然后短暂的记住了某个函数的用法。

对比两种注入知识方式,第二种更容易实现。RAG 正是这种方式。它能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用了 LlamaIndex 框架。LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。它允许您构建应用程序,既利用 LLMs 的优势,又融入您的私有或领域特定信息。

RAG 效果比对

由于xtuner是一款比较新的框架, InternLM2-Chat-1.8B 训练数据库中并没有收录到它的相关信息。左图中问答均未给出准确的答案。右图未对 InternLM2-Chat-1.8B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

2. 闯关

2.1 任务一:浦语 API+LlamaIndex 实践

2.1.1 不使用 LlamaIndex RAG(仅API)

在这里插入图片描述

可见GPT不具备相关知识

2.1.2 使用 API+LlamaIndex

在这里插入图片描述

可见RAG库使得GPT具有回答问题的能力了

2.1.3 LlamaIndex web

添加可视化网页功能…毕竟终端是有点丑的。

在这里插入图片描述

换个问题,发现仍然具有回答能力。

在这里插入图片描述

2.2 任务二:本地部署InternLM+LlamaIndex实践

2.2.1 LlamaIndex HuggingFaceLLM

在这里插入图片描述

回答的效果并不好,并不是我们想要的 xtuner。

2.2.2 LlamaIndex RAG

在这里插入图片描述

借助 RAG 技术后,就能获得我们想要的答案了。

2.2.3 LlamaIndex web

在这里插入图片描述

在这里插入图片描述

碎碎念:大部分时间都在 Debug…做一些开源项目我觉得大多数时候也不是在写代码,而是在Debug,真的很清楚感受到 GPT带来的便利…以及Debug的恼火…看来也有必要买一些哲学的书看一看…很多时候还是会崩溃…心态这方面还得练

与君共勉。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248031.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ High Performance(壹)

目录 前言 C概述 1.零开销原则 2.值语义 3.C函数中参数的含义 C必备技能 1.在函数返回值中使用auto 2.使用decltype(auto)转返回类型 3.对变量使用auto 4.常量引用 5.指针的常量传播 6.移动语义 7.资源获取与五法则 8.默认移动语义和零法则 9.将&&…

数据库的联合查询

数据库的联合查询 简介为什么要使⽤联合查询多表联合查询时MYSQL内部是如何进⾏计算的构造练习案例数据案例:⼀个完整的联合查询的过程 内连接语法⽰例 外连接语法 ⽰例⾃连接应⽤场景示例表连接练习 ⼦查询语法单⾏⼦查询多⾏⼦查询多列⼦查询在from⼦句中使⽤⼦查…

vue 预览pdf 【@sunsetglow/vue-pdf-viewer】开箱即用,无需开发

sunsetglow/vue-pdf-viewer 开箱即用的pdf插件sunsetglow/vue-pdf-viewer, vue3 版本 无需多余开发,操作简单,支持大文件 pdf 滚动加载,缩放,左侧导航,下载,页码,打印,文本复制&…

【zookeeper03】消息队列与微服务之zookeeper集群部署

ZooKeeper 集群部署 1.ZooKeeper 集群介绍 ZooKeeper集群用于解决单点和单机性能及数据高可用等问题。 集群结构 Zookeeper集群基于Master/Slave的模型 处于主要地位负责处理写操作)的主机称为Leader节点,处于次要地位主要负责处理读操作的主机称为 follower 节点…

Linux麦克风录音实战

在 Linux 上使用麦克风进行录音可以通过多种方式实现,包括使用命令行工具、图形界面应用程序以及编程接口。下面我将介绍几种常见的方法,从简单的命令行工具到使用 PortAudio 库进行编程。 一. 使用arecord命令行工具 arecord 是 ALSA(Adva…

游戏引擎学习第23天

实时代码编辑功能的回顾 当前实现的实时代码编辑功能已经取得了显著的成功,表现出强大的性能和即时反馈能力。该功能允许开发者在修改代码后几乎立即看到变化在运行中的程序中体现出来,极大提升了开发效率。尽管目前的演示内容较为简单,呈现…

Oracle 数据库 IDENTITY 列

IDENTITY列是Oracle数据库12c推出的新特性。之所以叫IDENTITY列,是由于其支持ANSI SQL 关键字 IDENTITY,其内部实现还是使用SEQUENCE。 不过推出这个新语法也是应该的,毕竟MyQL已经有 AUTO_INCREMENT列,而SQL Server也已经有IDENT…

计算机网络socket编程(2)_UDP网络编程实现网络字典

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 计算机网络socket编程(2)_UDP网络编程实现网络字典 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记,欢迎大家在评论区交流讨…

2022年计算机网络408考研真题解析

第一题: 解析:网络体系结构-数据链路层 在ISO网络参考模型中,运输层,网络层和数据链路层都实现了流量的控制功能,其中运输层实现的是端到端的流量控制,网络层实现的是整个网络的流量控制,数据链…

AI Prompt Engineering

AI Prompt Engineering 简介 Prompt Engineering, 提示工程,是人工智能领域的一项技术,它旨在通过设计高效的提示词(prompts)来优化生成式 AI(如 GPT、DALLE 等)的输出。提示词是用户与生成式 AI 交互的核…

Windows系统电脑安装TightVNC服务端结合内网穿透实现异地远程桌面

文章目录 前言1. 安装TightVNC服务端2. 局域网VNC远程测试3. Win安装Cpolar工具4. 配置VNC远程地址5. VNC远程桌面连接6. 固定VNC远程地址7. 固定VNC地址测试 前言 在追求高效、便捷的数字化办公与生活的今天,远程桌面服务成为了连接不同地点、不同设备之间的重要桥…

直播实时美颜平台开发详解:基于视频美颜SDK的技术路径

视频美颜SDK作为实现实时美颜的关键技术,为开发者提供了高效、灵活的解决方案。本篇文章,小编将以“基于视频美颜SDK的技术路径”为主题,深入解析直播实时美颜平台的开发要点。 一、视频美颜SDK的作用与优势 视频美颜SDK是一种集成化的开发工…

量子感知机

神经网络类似于人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题,是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子…

实现在两台宿主机下的docker container 中实现多机器通讯

基于我的实验背景 上位机:ubuntu 20.04 (docker humble 22.04) 下位机:ubuntu 22.04(docker noetic 20.04) 目标:实现在上位机中的docker container 容器的22.04环境去成功远程访问 非同网段的下位机的20.04的contai…

远程控制软件:探究云计算和人工智能的融合

在数字化时代,远程控制工具已成为我们工作与生活的重要部分。用户能够通过网络远程操作和管理另一台计算机,极大地提升了工作效率和便捷性。随着人工智能(AI)和云计算技术的飞速发展,远程控制工具也迎来了新的发展机遇…

ISUP协议视频平台EasyCVR萤石设备视频接入平台银行营业网点安全防范系统解决方案

在金融行业,银行营业厅的安全保卫工作至关重要,它不仅关系到客户资金的安全,也关系到整个银行的信誉和运营效率。随着科技的发展,传统的安全防护措施已经无法满足现代银行对于高效、智能化安全管理的需求。 EasyCVR视频汇聚平台以…

C#基础上机练习题

21.计算500-800区间内素数的个数cn,并按所求素数的值从大到小的顺序排列,再计算其间隔加、减之和,即第1个素数-第2个素数第3个素数-第4个素数第5个素数……的值sum。请编写函数实现程序的要求,把结果cn和sum输出。 22.在三位整数…

ubuntu24挂载硬盘记录

1、显示硬盘及所属分区情况。在终端窗口中输入如下命令: sudo fdisk -l 找到自己硬盘的分区 我的地址/dev/sda 2、显示硬盘及所属分区情况。在终端窗口中输入如下命令,格式化自己硬盘: sudo mkfs -t ext4 /dev/sda 3、在终端窗口中输入如下…

函数类型注释和Union联合类型注释

函数类型注释格式(调用时提示输入参数的类型): )def 函数名(形参名:类型,形参名:类型)->函数返回值类型: 函数体 Union联合类型注释(可注释多种类型混合的变量)格式: #先导入模块 from typing import…

【Python】分割秘籍!掌握split()方法,让你的字符串处理轻松无敌!

在Python开发中,字符串处理是最常见也是最基础的任务之一。而在众多字符串操作方法中,split()函数无疑是最为重要和常用的一个。无论你是Python新手,还是经验丰富的开发者,深入理解并熟练运用split()方法,都将大大提升…