基于深度学习CNN算法的花卉分类识别系统01--带数据集-pyqt5UI界面-全套源码

news2025/3/12 10:50:54

文章目录

  • 基于深度学习算法的花卉分类识别系统
  • 一、项目摘要
  • 二、项目运行效果
  • 三、项目文件介绍
  • 四、项目环境配置
    • 1、项目环境库
    • 2、环境配置视频教程
  • 五、项目系统架构
  • 六、项目构建流程
    • 1、数据集
    • 2、算法网络Mobilenet
    • 3、网络模型训练
    • 4、训练好的模型预测
    • 5、UI界面设计-pyqt5
    • 6、项目相关评价指标
  • 七、项目论文报告
  • 八、版权说明及获取方式
    • 1、项目获取方式
    • 2、项目版权说明及定制服务

各位同学大家好,本次给大家分享的项目为:

基于深度学习算法的花卉分类识别系统

一、项目摘要

花卉识别是计算机视觉中的一个重要应用,在园艺、农业和植物保护等领域具有广泛的潜在价值。本文的基于深度学习的花卉识别系统,采用MobileNet模型结合PyTorch框架实现数据集由网络采集的16类花卉图像组成,共计15740张,其中训练集和验证集按8:2的比例划分。为了提高模型的泛化能力,本文对数据进行了多种增强操作,包括随机裁剪、水平翻转及标准化处理

在训练过程中,采用AdamW优化器和交叉熵损失函数,并设置了合适的学习率及超参数,通过100个Epoch进行模型训练和验证。实验结果显示,验证集的最高准确率达到了93%,平均分类准确率为98%。为了用户体验,本文还基于PyQt5设计了用户交互界面,使用户能够便捷地上传图像并查看花卉识别结果以及相关植物信息。

二、项目运行效果

运行效果视频:
https://www.bilibili.com/video/BV1hE22YgEvk

运行效果截图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、项目文件介绍

在这里插入图片描述在这里插入图片描述

四、项目环境配置

1、项目环境库

python=3.8 pytorch pyqt5 opencv matplotlib 等

2、环境配置视频教程

1)anaconda下载安装教程
2)pycharm下载安装教程
3)项目环境库安装步骤教程
在这里插入图片描述

五、项目系统架构

在这里插入图片描述
花卉识别系统的整体架构分为四个主要模块:

1. 数据输入模块:负责接收用户输入的花卉图像。

2. 图像预处理模块:对输入的图像进行标准化处理,包括调整图像大小、归一化等,以确保与训练模型的输入要求一致。

3. 深度学习模型模块:通过预训练的MobileNet模型对预处理后的图像进行识别和分类,输出花卉的种类标签。

4. 用户交互模块:通过PyQt5构建图形用户界面,使用户能够便捷地上传图像,查看识别结果,并获得相应的花卉信息。

系统的整体工作流程如下:首先,用户通过用户界面选择要识别的花卉图片,随后系统对图像进行预处理,接着将处理后的图像输入到深度学习模型中进行分类,最后在用户界面上显示识别结果及花卉相关的简介。

六、项目构建流程

1、数据集

数据集文件夹:all_data

在这里插入图片描述
在这里插入图片描述

概述:

本文使用的数据集由16类不同花卉的图像组成,总计15740张

在这里插入图片描述

数据集格式及命令统一代码:to_rgb.py
(对数据集中的图像统一成rgb格式并进行统一规范命名)

在这里插入图片描述

2、算法网络Mobilenet

概述:
Mobilenet是专为移动设备和嵌入式系统设计的轻量化卷积神经网络。其主要特点在于采用了深度可分离卷积(Depthwise Separable Convolution)来减少计算量和参数数量,从而在资源受限的环境下实现高效的图像分类和识别。
在这里插入图片描述

算法代码为:models文件夹下的mobilenet.py

在这里插入图片描述

"""mobilenet in pytorch

[1] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
    https://arxiv.org/abs/1704.04861
"""

import torch
import torch.nn as nn


class DepthSeperabelConv2d(nn.Module):

    def __init__(self, input_channels, output_channels, kernel_size, **kwargs):
        super().__init__()
        self.depthwise = nn.Sequential(
            nn.Conv2d(
                input_channels,
                input_channels,
                kernel_size,
                groups=input_channels,
                **kwargs),
            nn.BatchNorm2d(input_channels),
            nn.ReLU(inplace=True)
        )

        self.pointwise = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        x = self.depthwise(x)
        x = self.pointwise(x)

        return x


class BasicConv2d(nn.Module):

    def __init__(self, input_channels, output_channels, kernel_size, **kwargs):

        super().__init__()
        self.conv = nn.Conv2d(
            input_channels, output_channels, kernel_size, **kwargs)
        self.bn = nn.BatchNorm2d(output_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)

        return x


class MobileNet(nn.Module):

    def __init__(self, width_multiplier=1, class_num=16):
       super().__init__()

       alpha = width_multiplier
       self.stem = nn.Sequential(
           BasicConv2d(3, int(32 * alpha), 3, padding=1, bias=False),
           DepthSeperabelConv2d(
               int(32 * alpha),
               int(64 * alpha),
               3,
               padding=1,
               bias=False
           )
       )

       #downsample
       self.conv1 = nn.Sequential(
           DepthSeperabelConv2d(
               int(64 * alpha),
               int(128 * alpha),
               3,
               stride=2,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(128 * alpha),
               int(128 * alpha),
               3,
               padding=1,
               bias=False
           )
       )

       #downsample
       self.conv2 = nn.Sequential(
           DepthSeperabelConv2d(
               int(128 * alpha),
               int(256 * alpha),
               3,
               stride=2,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(256 * alpha),
               int(256 * alpha),
               3,
               padding=1,
               bias=False
           )
       )

       #downsample
       self.conv3 = nn.Sequential(
           DepthSeperabelConv2d(
               int(256 * alpha),
               int(512 * alpha),
               3,
               stride=2,
               padding=1,
               bias=False
           ),

           DepthSeperabelConv2d(
               int(512 * alpha),
               int(512 * alpha),
               3,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(512 * alpha),
               int(512 * alpha),
               3,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(512 * alpha),
               int(512 * alpha),
               3,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(512 * alpha),
               int(512 * alpha),
               3,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(512 * alpha),
               int(512 * alpha),
               3,
               padding=1,
               bias=False
           )
       )

       #downsample
       self.conv4 = nn.Sequential(
           DepthSeperabelConv2d(
               int(512 * alpha),
               int(1024 * alpha),
               3,
               stride=2,
               padding=1,
               bias=False
           ),
           DepthSeperabelConv2d(
               int(1024 * alpha),
               int(1024 * alpha),
               3,
               padding=1,
               bias=False
           )
       )

       self.fc = nn.Linear(int(1024 * alpha), class_num)
       self.avg = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
        x = self.stem(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = self.avg(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x


def mobilenet(alpha=1, class_num=16):
    return MobileNet(alpha, class_num)

3、网络模型训练

训练代码为:train.py

  • 图像尺寸:输入图像大小设置为224×224,以适应MobileNet网络的输入层要求。

  • 批量大小(Batch-size):设置为16,既可以保证模型能够充分学习数据特征,又能在有限的计算资源下保持较高的训练效率。

  • 学习率(Learning Rate):初始学习率设为0.0001,并使用AdamW优化器,该优化器在保持学习率稳定的同时,能够通过权重衰减减少模型过拟合的风险。

  • 损失函数:采用交叉熵损失函数(CrossEntropyLoss),适合多类别分类任务。

  • Epoch设置:训练总共进行100个Epoch,以确保模型能够充分学习到数据特征,并利用早停策略保存最优模型。

在这里插入图片描述

import os
import argparse

import torch
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

from my_dataset import MyDataSet
from models.mobilenet import mobilenet as create_model
from utils import read_split_data, train_one_epoch, evaluate


def draw(train, val, ca):
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    plt.cla() # 清空之前绘图数据
    plt.title('精确度曲线图' if ca == "acc" else '损失值曲线图')
    plt.plot(train, label='train_{}'.format(ca))
    plt.plot(val, label='val_{}'.format(ca))
    plt.legend()
    plt.grid()
    plt.savefig('精确度曲线图' if ca == "acc" else '损失值曲线图')
    # plt.show()



def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    tb_writer = SummaryWriter()

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = create_model(class_num=16).to(device)

    if args.weights != "":
        assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)

        model.load_state_dict(torch.load(args.weights, map_location=device))


    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        train_acc_list.append(train_acc)
        train_loss_list.append(train_loss)

        val_acc_list.append(val_acc)
        val_loss_list.append(val_loss)


        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        if val_loss == min(val_loss_list):
            print('save-best-epoch:{}'.format(epoch))
            with open('loss.txt', 'w') as fb:
                fb.write(str(train_loss) + ',' + str(train_acc) + ',' + str(val_loss) + ',' + str(val_acc))
            torch.save(model.state_dict(), "./weights/flower-best-epoch.pth")




if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=16)
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=16)
    parser.add_argument('--lr', type=float, default=0.0001)

    # 数据集所在根目录
    parser.add_argument('--data-path', type=str,
                        default="all_data")

    # 预训练权重路径,如果不想载入就设置为空字符
    parser.add_argument('--weights', type=str, default='',
                        help='initial weights path')
    # 是否冻结权重
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    train_loss_list = []
    train_acc_list = []
    val_loss_list = []
    val_acc_list = []

    main(opt)

    draw(train_acc_list, val_acc_list, 'acc')
    draw(train_loss_list, val_loss_list, 'loss')

开始训练

在all_data中准备好数据集,并设置好超参数后,即可开始运行train.py

成功运行效果展示

1)会生成dataset.png数据集分布柱状图

2)pycharm下方实时显示相关训练日志

在这里插入图片描述

等待所有epoch训练完成后代码会自动停止,并在weights文件夹下生成训练好的模型pth文件,并生成准确率和损失值曲线图。

在这里插入图片描述

在这里插入图片描述

4、训练好的模型预测

无界面预测代码为:predict.py

在这里插入图片描述

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from models.mobilenet import mobilenet  as create_model


def main(img_path):
    import os
    os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = 224
    data_transform = transforms.Compose(
        [transforms.Resize(int(img_size * 1.143)),
         transforms.CenterCrop(img_size),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model  创建模型网络

    model = create_model(class_num=len(os.listdir('all_data'))).to(device)
    # load model weights  加载模型
    model_weight_path = "weights/flower-best-epoch.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    #调用模型进行检测
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()


    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    # 返回检测结果和准确率
    res = class_indict[str(list(predict.numpy()).index(max(predict.numpy())))]
    num= "%.2f" % (max(predict.numpy()) * 100) + "%"
    print(res,num)
    return res,num


if __name__ == '__main__':
    img_path = r"all_data\向日葵\2.png"
    main(img_path)

使用方法
1)设置好训练好的模型权重路径
2)设置好要预测的图像的路径
直接右键运行即可,成功运行后会在pycharm下方生成预测结果数据

在这里插入图片描述

5、UI界面设计-pyqt5

两款UI样式界面,自由选择

样式1纯色背景界面,可自由更改界面背景颜色

在这里插入图片描述

样式2:背景图像界面

在这里插入图片描述

对应代码文件
1)ui.py 和 ui2.py
用于设置界面中控件的属性样式和显示的文本内容,可自行修改界面背景色及界面文本内容

在这里插入图片描述
在这里插入图片描述

2)主界面.py 和 主界面2.py
用于设置界面中的相关按钮及动态的交互功能

在这里插入图片描述

3)inf.py 相关介绍及展示信息文本,可自行修改介绍信息

在这里插入图片描述

6、项目相关评价指标

1、准确率曲线图(训练后自动生成)
在这里插入图片描述

2、损失值曲线图(训练后自动生成)
在这里插入图片描述

3、混淆矩阵图
在这里插入图片描述

生成方式:训练完模型后,运行confusion_matrix.py文件,设置好使用的模型权重文件后,直接右键运行即可,等待模型进行预测生成

在这里插入图片描述

以上为本项目完整的构建实现流程步骤,更加详细的项目讲解视频如下
https://www.bilibili.com/video/BV1Kt22YPEb2
(对程序使用,项目中各个文件作用,算法网络结构,所有程序代码等进行的细致讲解,时长1小时)

七、项目论文报告

本项目有配套的论文报告(1w字左右),部分截图如下

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

八、版权说明及获取方式

1、项目获取方式

1)项目全套文件代码获取地址
项目全套代码地址:https://yuanlitui.com/a/acg
2)项目配套论文报告获取地址
项目配套报告:https://yuanlitui.com/a/ac4

2、项目版权说明及定制服务

本项目由本人 Smaller-孔 设计并开发
可提供服务如下:
1)项目功能及界面定制改进服务
如添加用户登录注册、语音播报、语音输入等系统功能,设计Web端界面,添加mysql数据库替换数据集、算法、及算法改进对比等服务
2)售后服务
获取项目后,按照配置视频进行配置,配置过程中出现问题可添加我咨询答疑,配置好后后续因产品自身代码问题无法正常使用,提供1月内免费售后(因使用者对代码或环境进行调整导致程序无法正常运行需有偿售后),项目文件中售后服务文档获取本人联系方式,提供后续售后及相关定制服务。
3)深度学习CV领域的毕设项目,项目及技术1v1辅导,开发等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2246286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java的方法、基本和引用数据类型

个人的黑马程序员java笔记 目录 方法 例:方法定义和调用 方法的重载 对于byte, short, int, long类型 方法的内存 基本数据类型 引用数据类型 方法的值的传递的内存原理 方法 方法(method)是程序中最小的执行单元格式 方法定义&a…

分层架构 IM 系统之架构演进

在电商业务日活几百万的情况下,IM 系统采用分层架构方式,如下图。 分层架构的 IM 系统,整体上包含了【终端层】、【入口层】、【业务逻辑层】、【路由层】、【数据访问层】和【存储层】,我们在上篇文章(分层架构 IM 系…

【Docker】Docker介绍|部署|简单使用|镜像操作|容器操作|自动构建镜像

文章目录 DockerDocker介绍Docker简介Docker的主要特点为什么要使用Docker?Docker核心概念(1)镜像(Image)(2)容器(Container)(3)仓库(…

LLM( Large Language Models)典型应用介绍 1 -ChatGPT Large language models

ChatGPT 是基于大型语言模型(LLM)的人工智能应用。 GPT 全称是Generative Pre-trained Transformer。-- 生成式预训练变换模型: Generative(生成式):可以根据输入生成新的文本内容,例如回答问题…

PAL(Program-Aided Language Model)

PAL(Program-Aided Language Model)是一种结合生成式语言模型(如 GPT)和程序执行能力的技术框架。它的核心思想是通过让语言模型生成代码或程序来解决复杂任务,程序执行的结果反过来增强语言模型的输出准确性和逻辑性。…

Flutter:AnimatedSwitcher当子元素改变时,触发动画

AnimatedSwitcher中的子元素 由:CircularProgressIndicator() 改变为:Image.network(https://cdn.uviewui.com/uview/swiper/1.jpg) 则会触发动画class _MyHomePageState extends State<MyHomePage> {bool flag true;overrideWidget build(BuildContext context) {retur…

NUXT3学习日记四(路由中间件、导航守卫)

前言 在 Nuxt 3 中&#xff0c;中间件&#xff08;Middleware&#xff09;是用于在页面渲染之前或导航发生之前执行的函数。它们允许你在路由切换时执行逻辑&#xff0c;像是身份验证、重定向、权限控制、数据预加载等任务。中间件可以被全局使用&#xff0c;也可以只在特定页…

QT中QString类的各种使用

大部分的QString使用可以参考:QT中QString 类的使用--获取指定字符位置、截取子字符串等_qstring 取子串-CSDN博客 补充一种QString类的分离:Qt QString切割(Split()与Mid()函数详解)_qstring split-CSDN博客 1. Trimmed和Simplified函数(去除空白) trimmed&#xff1a;去除了…

经济增长初步

1.人均产出 人均产出&#xff0c;通常指的是一个国家、地区或组织在一定时期内&#xff0c;每个劳动人口平均创造的生产总值。它是衡量一个地区或国家经济效率和劳动生产率的重要指标。具体来说&#xff0c;人均产出可以通过以下公式计算&#xff1a; 人均产出总产出/劳动人口…

c#使用高版本8.0步骤

一、找到项目所在怒路&#xff0c;记事本打开.proj文件。 二、记事本打开此文件&#xff0c;<PropertyGroup>后面加入如下语句&#xff1a; <LangVersion>8.0</LangVersion> 关闭并保存。 根据提示全部重新加载即可。

Flutter:SlideTransition位移动画,Interval动画延迟

配置vsync&#xff0c;需要实现一下with SingleTickerProviderStateMixinclass _MyHomePageState extends State<MyHomePage> with SingleTickerProviderStateMixin{// 定义 AnimationControllerlate AnimationController _controller;overridevoid initState() {super.…

深入浅出分布式缓存:原理与应用

文章目录 概述缓存分片算法1. Hash算法2. 一致性Hash算法3. 应用场景Redis集群方案1. Redis 集群方案原理2. Redis 集群方案的优势3. Java 代码示例:Redis 集群数据定位Redis 集群中的节点通信机制:Gossip 协议Redis 集群的节点通信:Gossip 协议Redis 集群的节点通信流程Red…

SQL注入--联合注入--理论

什么是SQL注入&#xff1f; SQL注入&#xff08;SQL Injection&#xff09;是一种常见的Web安全漏洞。 形成的主要原因是web应用程序在接收相关数据参数时未做好过滤&#xff0c;将其直接带入到数据库中查询&#xff0c;导致攻击者可以拼接执行构造的SQL语句&#xff0c;从而获…

用web前端写出一个高校官网

所实现的效果如链接&#xff1a; http://127.0.0.1:5500/school.html <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>xigongshang</title> <style> * {margin: 0;padding: 0;} a{ text-decoration: none…

slice介绍slice查看器

Android Jetpack架构组件(十)之Slices - 阅读清单 - 腾讯云开发者社区-腾讯云 slice 查看器apk 用adb intall 安装 Releases android/user-interface-samples GitHubMultiple samples showing the best practices in the user interface on Android. - Releases android/u…

有关博客博客系统的测试报告 --- 初次进行项目测试篇

文章目录 前言一、博客系统的项目背景二、博客系统的项目简介1.后端功能1.1 用户管理1.2 博客管理1.3 权限管理 2.前端功能2.1 用户界面 测试计划测试工具、环境设计的测试动作功能测试访问博客登录页面博客首页测试博客详情页博客编辑页 自动化测试自动化测试用例自动化测试脚…

QT基础 编码问题 定时器 事件 绘图事件 keyPressEvent QT5.12.3环境 C++实现

一、编码问题 在计算机编程中&#xff0c;流&#xff08;Stream&#xff09;是一种抽象的概念&#xff0c;用于表示数据的输入或输出。根据处理数据的不同方式&#xff0c;流可以分为字节流&#xff08;Byte Stream&#xff09;和字符流&#xff08;Character Stream&#xff0…

Hive基础面试-如何理解复用率的

1. 模型的复用率你们是怎么做的&#xff1f; 简单直白的说就是你的模型复用率如何&#xff0c;在业务方是否认可该模型&#xff0c;也是衡量模型建设的一个标准&#xff0c;复用率数&#xff1a;数仓模型涉及的核心是追求模型的复用和共享&#xff0c;引用系数越高&#xff0c;…

如何使用 Python 开发一个简单的文本数据转换为 Excel 工具

目录 一、准备工作 二、理解文本数据格式 三、开发文本数据转换为Excel工具 读取CSV文件 将DataFrame写入Excel文件 处理其他格式的文本数据 读取纯文本文件&#xff1a; 读取TSV文件&#xff1a; 四、完整代码与工具封装 五、使用工具 六、总结 在数据分析和处理的…

知识中台:提升企业知识管理的智能化水平

在数字化转型的浪潮中&#xff0c;企业知识管理的智能化水平成为提升竞争力的关键。HelpLook知识中台通过集成先进的AI技术&#xff0c;为企业提供了一个智能化的知识管理平台。 一、知识管理智能化的重要性 智能化的知识管理不仅能够提高信息检索的效率&#xff0c;还能通过…