大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本

news2024/11/23 18:11:24

点一下关注吧!!!非常感谢!!持续更新!!!

Java篇开始了!

目前开始更新 MyBatis,一起深入浅出!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(正在更新…)

章节内容

上节我们完成了如下的内容:

  • ODS层的构建 Hive处理
  • UDF 处理
  • SerDe 处理
  • 当前总结

在这里插入图片描述

活跃会员

  • 活跃会员:打开应用的会员即为活跃会员
  • 新增会员:第一次使用英勇的会员,定义为新增会员
  • 留存会员:某段时间新增会员,经过一段时间后,仍继续使用应用认为是留存会员
  • 活跃会员的指标需求:每日、每周、每月的活跃会员数

DWD:会员的每日启动信息明细(会员都是活跃会员,某个会员可能会出现多次)
DWS:每日活跃会员信息(关键)、每周活跃会员信息、每月活跃会员信息
每日活跃会员信息 => 每周活跃会员信息
每日活跃会员信息 => 每月活跃会员信息
ADS:每日、每周、每月活跃会员数(输出)

ADS表结构:daycnt weekcnt monthcnt dt

备注:周、月为自然周、自然月

处理过程:

  • 建表(每日、每周、每月活跃会员信息)
  • 每日启动明细 => 每日活跃会员
  • 每日活跃会员 => 每周活跃会员;每日活跃会员 => 每月活跃会员
  • 汇总生成ADS层的数据

创建DWS层表

DWS作用

统一数据模型

将原始数据(ODS层)按照一定的逻辑模型进行整合、清洗、加工,形成标准化的数据结构。
支持对数据的多维度、多粒度分析。

支持业务场景

满足企业对历史数据的查询和分析需求。
支持 OLAP(在线分析处理)操作,如聚合查询、钻取和切片。

数据细化与分类

将数据按照主题域(如销售、财务、库存等)分类,便于管理和查询。
通常保持较高的细节粒度,便于灵活扩展。

数据准确性与一致性

经过处理的数据经过校验,确保逻辑关系正确,能够为下游提供准确的一致性数据。

编写脚本

启动Hive,进行执行:

use dws;
drop table if exists dws.dws_member_start_day;
create table dws.dws_member_start_day
(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string
) COMMENT '会员日启动汇总'
partitioned by(dt string)
stored as parquet;
drop table if exists dws.dws_member_start_week;
create table dws.dws_member_start_week(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `week` string
) COMMENT '会员周启动汇总'
PARTITIONED BY (`dt` string)
stored as parquet;
drop table if exists dws.dws_member_start_month;
create table dws.dws_member_start_month(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `month` string
) COMMENT '会员月启动汇总'
PARTITIONED BY (`dt` string)
stored as parquet;

执行结果如下图所示:
在这里插入图片描述

加载DWS层数据

vim /opt/wzk/hive/dws_load_member_start.sh

写入的内容如下所示:

#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
# 汇总得到每日活跃会员信息;每日数据汇总得到每周、每月数据
sql="
insert overwrite table dws.dws_member_start_day
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand))
from dwd.dwd_start_log
where dt='$do_date'
group by device_id;
-- 汇总得到每周活跃会员
insert overwrite table dws.dws_member_start_week
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_add(next_day('$do_date', 'mo'), -7)
from dws.dws_member_start_day
where dt >= date_add(next_day('$do_date', 'mo'), -7)
and dt <= '$do_date'
group by device_id;
-- 汇总得到每月活跃会员
insert overwrite table dws.dws_member_start_month
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_format('$do_date', 'yyyy-MM')
from dws.dws_member_start_day
where dt >= date_format('$do_date', 'yyyy-MM-01')
and dt <= '$do_date'
group by device_id;
"
hive -e "$sql"

注意Shell的引号。
写入的内容如下图所示:
在这里插入图片描述
ODS => DWD => DWS(每日、每周、每月活跃会员的汇总表)

创建ADS层表

ADS 作用

聚合和简化数据

将 DWS 层中多表、多主题域的数据聚合成简单易用的表或视图。
直接输出满足业务需求的数据结果。

面向业务应用

通过设计宽表或高性能视图,直接支持具体的业务场景和报表需求。
响应快速查询需求,如实时数据的展示。

数据分发与集成

为前端的 BI 工具、报表系统或 API 服务提供高效的查询接口。
能够通过缓存机制或物化视图加速查询性能。

轻量化与高性能

尽量减少数据量,保留业务最关心的关键指标。
采用预聚合、预计算等技术提升查询效率。

计算当天、当周、当月活跃会员数量

drop table if exists ads.ads_member_active_count;
create table ads.ads_member_active_count(
  `day_count` int COMMENT '当日会员数量',
  `week_count` int COMMENT '当周会员数量',
  `month_count` int COMMENT '当月会员数量'
) COMMENT '活跃会员数'
partitioned by(dt string)
row format delimited fields terminated by ',';

执行结果如下图所示:
在这里插入图片描述

加载ADS层数据

vim /opt/wzk/hive/ads_load_memeber_active.sh

写入的内容如下:

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
with tmp as(
  select 'day' datelabel, count(*) cnt, dt
  from dws.dws_member_start_day
  where dt='$do_date'
  group by dt
  union all
  select 'week' datelabel, count(*) cnt, dt
  from dws.dws_member_start_week
  where dt='$do_date'
  group by dt
  union all
  select 'month' datelabel, count(*) cnt, dt
  from dws.dws_member_start_month
  where dt='$do_date'
  group by dt
)
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select sum(case when datelabel='day' then cnt end) as
day_count,
sum(case when datelabel='week' then cnt end) as
week_count,
sum(case when datelabel='month' then cnt end) as
month_count
from tmp
group by dt;
"
hive -e "$sql"

写入内容如下图所示:
在这里插入图片描述
这里有一个同样功能的脚本,可以参考对比以下:

vim /opt/wzk/hive/ads_load_memeber_active2.sh

写入内容如下:

#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select daycnt, weekcnt, monthcnt
from (select dt, count(*) daycnt
      from dws.dws_member_start_day
      where dt='$do_date'
      group by dt
     ) day join
(select dt, count(*) weekcnt
 from dws.dws_member_start_week
 where dt='$do_date'
 group by dt
) week on day.dt=week.dt
join
(select dt, count(*) monthcnt
 from dws.dws_member_start_month
 where dt='$do_date'
 group by dt
) month on day.dt=month.dt;
"
hive -e "$sql"

写入内容如下图所示:
在这里插入图片描述

  • 第一个脚本:通过构建临时表(WITH tmp AS (…))将不同维度的数据(天、周、月)汇总到一个临时表中,再通过 SUM 计算出最终的统计结果。这种方式的灵活性较高,便于扩展。
  • 第二个脚本:直接通过 JOIN 不同的子查询,将天、周、月三个维度的数据联结在一起,最后插入目标表。这种方式在性能上可能更高效,但扩展性稍差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2246165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

摄影:相机控色

摄影&#xff1a;相机控色 白平衡&#xff08;White Balance&#xff09;白平衡的作用&#xff1a; 白平衡的使用环境色温下相机色温下总结 白平衡偏移与包围白平衡包围 影调 白平衡&#xff08;White Balance&#xff09; 人眼看到的白色&#xff1a;会自动适应环境光线。 相…

性能监控利器:Ubuntu 22.04 上的 Zabbix 安装与配置指南

简介 今天我们来聊聊如何在 Ubuntu 22.04 上安装和配置 Zabbix。我们会用到 PostgreSQL 作为数据库后端&#xff0c;Nginx 作为 Web 服务器&#xff0c;并用 Let’s Encrypt SSL 证书来保驾护航。 什么是 Zabbix&#xff1f; Zabbix 是一个开源的网络监控和管理解决方案&…

队列基本实现

模板 int queue[10010]; int hh1,tt0; void push1(int x) {queue[tt]x; } void pop1() {if(hh>tt){cout<<"ERR_CANNOT_POP"<<endl;}else{hh;} } int query1() {if(hh>tt){cout<<"ERR_CANNOT_QUERY"<<endl;}return queue[hh…

【ArcGISPro】使用AI模型提取要素-提取车辆(目标识别)

示例数据下载 栅格数据从网上随便找一个带有车辆的栅格数据 f094a6b1e205cd4d30a2e0f816f0c6af.jpg (1200799) (588ku.com) 添加数据

GitLab|数据迁移

注意&#xff1a;新服务器GitLab版本需和旧版本一致 在旧服务器执行命令进行数据备份 gitlab-rake gitlab:backup:create 备份数据存储在 /var/opt/gitlab/backups/ 将备份数据传输到新服务器的/var/opt/gitlab/backups/下&#xff0c;并修改文件权限&#xff08;下载前和上传…

UE5 5.1.1创建C++项目,显示error C4668和error C4067的解决方法

因为工作要求&#xff0c;没法使用最新 5.5版本的ue5 而是要用ue5.1和5.2版本。 但是我在安装下载了visual studio2022后&#xff0c;使用 ue5.1编辑器 创建C项目&#xff0c;爆出如下错误。 error C4668: ?????__has_feature?????ΪԤ?????꣬???0????…

网络安全概论

一、 网络安全是一个综合性的技术。在Internet这样的环境中&#xff0c;其本身的目的就是为了提供一种开放式的交互环境&#xff0c;但是为了保护一些秘密信息&#xff0c;网络安全成为了在开放网络环境中必要的技术之一。网络安全技术是随着网络技术的进步逐步发展的。 网络安…

51单片机基础01 单片机最小系统

目录 一、什么是51单片机 二、51单片机的引脚介绍 1、VCC GND 2、XTAL1 2 3、RST 4、EA 5、PSEN 6、ALE 7、RXD、TXD 8、INT0、INT1 9、T0、T1 10、MOSI、MISO、SCK 11、WR、RD 12、通用IO P0 13、通用IO P1 14、通用IO P2 三、51单片机的最小系统 1、供电与…

DASCTF 2024 10月 Reverse 完成笔记 附题目

题目链接: https://github.com/Airrcat/long_long/tree/main/DASCTF_2024_10 ezre 查PE 32位无壳 开始分析 看起来很像加壳了 字符串未有暴露信息&#xff0c;但是段中有一个themida 发现是一个壳&#xff0c;直接去找脱壳机 一些脱壳工具&#xff08;Magicmida)是…

JavaScript 中 arguments、类数组与数组的深入解析

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;什么是 arguments 对象2.1 arguments 的定义2.2 arguments 的特性2.3 使用场景 &#x1f4af;深入了解 arguments 的结构3.1 arguments 的内部结构arguments 的关键属性 3.2 类数组…

Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化

Kafka&#xff1a;分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析&#xff1a;从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析&#xff1a…

数位之和c++

题目描述 小杨有 n个正整数&#xff0c;他认为一个正整数是美丽数字当且仅当该正整数每一位数字的总和是 7 的倍数。 小杨想请你编写一个程序判断 n 个正整数哪些是美丽数字。 输入 第一行包含一个正整数 n&#xff0c;代表正整数个数。 之后n 行&#xff0c;每行包含一个…

同三维T4000S系列高清SDI字符叠加器

同三维T4000S系列高清SDI字符叠加器 两个型号&#xff1a; 同三维T4000S-2U (2U机箱&#xff0c;可插1-16张叠加模块) 同三维T4000S1 &#xff08;单路&#xff09; 产品简介 “HD-SDI字符叠加器”可在HD-SDI视频图象信号上叠加日期、时间及中英文字符信息。广泛用于安防监…

重生之我在学环境变量

环境变量 基本概念 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我们的所链接的动态静态库在哪里&#xff0c;但 是照样可以链接成功&#…

Flink学习连载文章4-flink中的各种转换操作

首先&#xff0c;先搞一个模板代码&#xff0c;方便后面的操作 #if (${PACKAGE_NAME} && ${PACKAGE_NAME} ! "")package ${PACKAGE_NAME};#end #parse("File Header.java") import org.apache.flink.streaming.api.environment.StreamExecutionEnv…

fastadmin实现站内通知功能

实现效果如下 application/admin/view/common/header.html <style>#notificationMenu {display: none;position: absolute;top: 40px;right: 0;background: #fff;border-radius: 6px;padding: 10px 0;width: 300px;box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);z-inde…

默语博主的推荐:探索技术世界的旅程

这是第一位推荐的博主默语 引言&#xff1a; CSDN中的默语博主是一个值得关注和学习的技术大拿。他的博客内容不仅涵盖了各种热门的技术领域&#xff0c;还能够帮助读者深入了解技术背后的原理和应用。在这篇类博客的内容中&#xff0c;我们将探索默语博主推荐的几篇博客&#…

【漏洞复现】|智互联SRM智联云采系统quickReceiptDetail SQL注入漏洞

漏洞描述 智互联(深圳)科技有限公司SRM智联云采系统针对企业供应链管理难题&#xff0c;及智能化转型升级需求&#xff0c;智联云采依托人工智能、物联网、大数据、云等技术&#xff0c;通过软硬件系统化方案&#xff0c;帮助企业实现供应商关系管理和采购线上化、移动化、智能…

【数据分析】认清、明确

1、什么是数据分析。 - 通过对大量的数据进行科学的分析。 - 得出结论&#xff0c;提出建议&#xff0c;辅助公司企业的决策。2、数据分析分为几步。 - 1.明确目的! - 2.收集数据!自己的数据! 自动化采集的数据! - 3.数据处理! - 4.数据分析!数据分析(业务)数据挖掘(代码算法…

前后端分离,解决vue+axios跨域和proxyTable不生效等问题

看到我这篇文章前可能你以前看过很多类似的文章。至少我是这样的&#xff0c;因为一直没有很好的解决问题。 正文 当我们通过webstorm等IDE开发工具启动项目的时候&#xff0c;通过命令控制台可以观察到启动项目的命令 如下&#xff1a; webpack-dev-server --inline --prog…