基于YOLOv8深度学习的独居老人情感状态监护系统(PyQt5界面+数据集+训练代码)

news2025/1/14 0:59:10

本研究提出了一种创新的独居老人情感状态监护系统,基于YOLOV8深度学习模型,旨在通过对老年人面部表情的实时监测与分析,来精准识别其情感变化,从而提高独居老人的生活质量,确保其心理健康。本系统通过整合先进的YOLOV8算法进行图像检测与情感识别,具备高效的情感状态判断能力。YOLOV8模型在情感识别领域具有出色的性能表现,能够在复杂场景中准确定位和分析面部表情,为情感状态监控提供了坚实的技术支持。

在系统架构方面,研究采用了基于PyQt5的用户界面开发框架,界面设计简洁直观,操作流程友好,便于用户快速上手。系统通过数据集的全面训练和测试,不仅能准确检测老年人面部表情的细微变化,还能对多种情感状态进行精准分类,如快乐、悲伤、愤怒、焦虑等。此外,系统具有强大的实时监控功能,能够持续追踪老年人的情绪变化。

为了确保系统的实际应用价值,本研究通过多个独居老人的数据集进行训练与测试,验证了其在情感状态识别中的高准确性和稳定性。实验结果表明,该系统在实时性、鲁棒性与精确性等关键性能指标上均表现优异,能够适应各种复杂的家庭或养老院环境。进一步的应用分析显示,该系统不仅可以有效提升老年人的生活质量,还可以为社会老龄化问题提供一种技术支持方案,具有广阔的应用前景。

本系统未来的优化方向可能包括进一步提升情感识别的精度,扩展支持的情感种类,甚至结合音频数据进行多模态情感分析。同时,增加与智能家居、健康监测设备的联动性,打造更加全面的老年人情感状态监护网络,将为独居老年人群体提供更全面、更安全的生活环境。

算法流程

项目数据

通过搜集关于数据集为各种各样的老人情感状态相关图像,并使用Labelimg标注工具对每张图片进行标注,分8个检测类别,分别是’老人愤怒’,’老人鄙视’,’老人厌恶’,’老人恐惧’,’老人高兴’,’老人平和’,’老人悲伤’,’老人惊讶’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

模型训练

模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。

YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。

Yolov8模型网络结构图如下图所示:

2.数据集准备与训练

本研究使用了包含各种老年情绪状态相关图像的数据集,并通过Labelimg标注工具对每张图像中的目标边框(Bounding Box)及其类别进行标注。然后主要基于YOLOv8n这种模型进行模型的训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。本次标注的目标类别为老年情绪状态,数据集中共计包含25262张图像,其中训练集占17101张,验证集占5406张,测试集占2755张。部分图像如下图所示:

部分标注如下图所示:

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入datasets目录下。

接着需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。
data.yaml的具体内容如下:

train: “E:/ElderlyEmotionsObjective_v8/datasets/train/images”训练集的路径
val: “E:/ElderlyEmotionsObjective_v8/datasets//valid/images”验证集的路径
test: “E:/ElderlyEmotionsObjective_v8/datasets/test/images”测试集的路径

nc: 8 模型检测的类别数,共有8个类别。

names:
[
“Anger”,
“Contempt”,
“Disgust”,
“Fear”,
“Happy”,
“Neutral”,
“Sad”,
“Surprise”,
]

这个文件定义了用于模型训练和验证的数据集路径,以及模型将要检测的目标类别。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小(根据内存大小调整,最小为1)。

CPU/GPU训练代码如下:

加载名为 yolov8n.pt 的预训练YOLOv8模型,yolov8n.pt是预先训练好的模型文件。
使用YOLO模型进行训练,主要参数说明如下:
(1)data=data_yaml_path: 指定了用于训练的数据集配置文件。
(2)epochs=150: 设定训练的轮数为150轮。
(3)batch=4: 指定了每个批次的样本数量为4。
(4)optimizer=’SGD’):SGD 优化器。
(7)name=’train_v8′: 指定了此次训练的命名标签,用于区分不同的训练实验。

3.训练结果评估

在深度学习的过程中,我们通常通过观察损失函数下降的曲线来了解模型的训练情况。对于YOLOv8模型的训练,主要涉及三类损失:定位损失(box_loss)、分类损失(cls_loss)以及动态特征损失(dfl_loss)。训练完成后,相关的训练过程和结果文件会保存在 runs/ 目录下,具体如下:

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

训练结果如下:

这张图展示了YOLOv8模型在训练和验证过程中的多个重要指标的变化趋势,具体如下:

train/box_loss:
(1)这是训练过程中边界框损失的变化。边界框损失用于衡量模型预测的目标框与实际目标框的差异。
(2)随着训练的进行,损失逐渐减少,表明模型在定位目标时的误差逐渐减少。

train/cls_loss:
(1)这是训练集上的分类损失。分类损失衡量模型对目标类别的预测准确性。
(2)损失值随着训练逐渐减少,表明模型在分类目标类别时的准确性逐渐提高。

train/dfl_loss:
(1)这是分布聚焦损失(distribution focal loss),用于帮助模型对目标框的精确定位。
(2)此损失通常用于边界框精度的优化,损失下降表明模型在预测边界框时的性能有所提升。

metrics/precision(B):
(1)这是训练集上的精度(precision)曲线。精度表示模型在检测到的目标中有多少是真正的目标。
(2)图中曲线表明精度随着训练的进行逐渐提高。

metrics/recall(B):
(1)这是训练集上的召回率(recall)曲线。召回率表示模型检测出的真实目标的比例。
(2)召回率逐步提高,表明模型在识别所有正类样本上的表现越来越好。

val/box_loss:
(1)这是验证集上的边界框损失曲线。
(2)与训练损失类似,验证损失的下降表明模型在验证集上也表现得越来越好。

val/cls_loss:
(1)这是验证集上的分类损失曲线。
(2)损失下降意味着模型在验证集上的分类性能有所提升。

val/dfl_loss:
(1)这是验证集上的分布聚焦损失曲线。
(2)下降趋势表明模型在验证集上定位边界框的精度在提高。

metrics/mAP50(B):
(1)这是验证集上的mAP50曲线,表示在交并比阈值为0.5时模型的平均精度(mean Average Precision)。
(2)数值越高表示模型在目标检测任务中的表现越好。

metrics/mAP50-95(B):
(1)这是验证集上的mAP50-95曲线,表示在不同交并比阈值(从0.5到0.95)下模型的平均精度。
(2)曲线平稳上升,表示模型整体性能较为稳定且表现良好。

这组图展示了模型在训练和验证过程中的表现,模型的各项损失均随着训练的进行逐渐减少,而各项指标则逐渐提高,表明模型的性能逐步优化。

这张图展示的是 Precision-Recall 曲线,用于评估模型在不同类别下的检测性能。以下是详细解释:

每条彩色曲线:
(1)代表一个特定类别的精确率和召回率之间的变化关系。
(2)图例中列出了每个类别的名称以及其平均精度(mAP@0.5)值。
(3)例如,“Happy”类别的mAP值为0.956,说明该类别在不同阈值下的平均精度较高。

蓝色粗线:
(1)代表所有类别的总体精确率-召回率曲线,并且图例中显示了总体的mAP@0.5值为0.829。
(2)这意味着模型在所有类别上的平均精度为82.9%。

mAP@0.5:
(1)平均精度(mean Average Precision),是在不同的阈值(通常为0.5)下计算的精确率和召回率的综合性能指标。
(2)图中的mAP@0.5值代表模型在该阈值下的平均表现,值越高表示模型的整体检测性能越好。

曲线形状:
(1)不同类别的曲线反映了模型在该类别下的表现。
(2)例如,“Happy”类别的曲线接近图的右上角,表明该类别的模型表现非常好,精确率和召回率都较高。
(3)而“Neutral”类别的曲线较低,表示该类别的模型表现相对较弱。

该图直观展示了模型在多个情感类别(如Anger, Contempt, Disgust, Fear, Happy, Neutral, Sad, Surprise)上的分类性能。通过分析每个类别的精确率-召回率曲线,可以帮助我们了解模型在哪些类别上表现良好,在哪些类别上还需要改进。

4.检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
imgTest.py 图片检测代码如下:

加载所需库:
(1)from ultralytics import YOLO:导入YOLO模型类,用于进行目标检测。
(2)import cv2:导入OpenCV库,用于图像处理和显示。

加载模型路径和图片路径:
(1)path = ‘models/best.pt’:指定预训练模型的路径,这个模型将用于目标检测任务。
(2)img_path = “TestFiles/imagetest.jpg”:指定需要进行检测的图片文件的路径。

加载预训练模型:
(1)model = YOLO(path, task=’detect’):使用指定路径加载YOLO模型,并指定检测任务为目标检测 (detect)。
(2)通过 conf 参数设置目标检测的置信度阈值,通过 iou 参数设置非极大值抑制(NMS)的交并比(IoU)阈值。

检测图片:
(1)results = model(img_path):对指定的图片执行目标检测,results 包含检测结果。

显示检测结果:
(1)res = results[0].plot():将检测到的结果绘制在图片上。
(2)cv2.imshow(“YOLOv8 Detection”, res):使用OpenCV显示检测后的图片,窗口标题为“YOLOv8 Detection”。
(3)cv2.waitKey(0):等待用户按键关闭显示窗口

此代码的功能是加载一个预训练的YOLOv8模型,对指定的图片进行目标检测,并将检测结果显示出来。

执行imgTest.py代码后,会将执行的结果直接标注在图片上,结果如下:

这段输出是基于YOLOv8模型对图片“imagetest.jpg”进行检测的结果,具体内容如下:

图像信息:
(1)处理的图像路径为:TestFiles/imagetest.jpg。
(2)图像尺寸为 640×500 像素。

检测结果:
(1)模型在该图片上检测到 1 个鄙视(”1 Contempt”)

处理速度:
(1)预处理时间:3.7 毫秒
(2)推理时间:35.5 毫秒
(3)后处理时间:53.9 毫秒

模型在约 35.5 毫秒内成功检测出图像中的 “轻蔑” 表情,并输出了检测框和相关信息。

运行效果

– 运行 MainProgram.py

1.主要功能:
(1)可用于实时检测目标图片中的独居老人情绪状态;
(2)支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
(3)界面可实时显示目标位置、目标总数、置信度、用时等信息;
(4)支持图片或者视频的检测结果保存。

2.检测结果说明:

这张图表显示了基于YOLOv8模型的目标检测系统的检测结果界面。以下是各个字段的含义解释:

用时(Time taken):
(1)这表示模型完成检测所用的时间为0.023秒。
(2)这显示了模型的实时性,检测速度非常快。

目标数目(Number of objects detected):
(1)检测到的目标数目为1,表示这是当前检测到的第1个目标。

目标选择(下拉菜单):全部:
(1)这里有一个下拉菜单,用户可以选择要查看的目标类型。
(2)在当前情况下,选择的是“全部”,意味着显示所有检测到的目标信息。

类型(Type):
(1)当前选中的行为类型为 “老人高兴”,表示系统正在高亮显示检测到的“Happy”。

置信度(Confidence):
(1)这表示模型对检测到的目标属于“老人高兴”类别的置信度为99.01%。
(2)置信度反映了模型的信心,置信度越高,模型对这个检测结果越有信心。

目标位置(Object location):
(1)xmin: 0, ymin: 0:目标的左上角的坐标(xmin, ymin),表示目标区域在图像中的位置。
(2)xmax: 2421, ymax: 30125:目标的右下角的坐标(xmax, ymax),表示目标区域的边界。

这些坐标表示在图像中的目标区域范围,框定了检测到的“老人高兴”的位置。

这张图展示了独居老人情绪状态的一次检测结果,包括检测时间、检测到的种类、各行为的置信度、目标的位置信息等。用户可以通过界面查看并分析检测结果,提升独居老人情绪状态监测的效率。

3.图片检测说明
(1)老人悲伤情绪状态

(2)老人鄙视情绪状态

(3)老人愤怒情绪状态

(4)老人高兴情绪状态

(5)老人厌恶情绪状态

(6)老人惊讶情绪状态

(7)老人恐惧情绪状态

(8)老人平和情绪状态

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹。
操作演示如下:
(1)点击目标下拉框后,可以选定指定目标的结果信息进行显示。
(2)点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。

检测结果:系统识别出图片中的老年人情绪状态,并显示检测结果,包括总目标数、用时、目标类型、置信度、以及目标的位置坐标信息。

4.视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

检测结果:系统对视频进行实时分析,检测到老年人情绪状态并显示检测结果。表格显示了视频中多个检测结果的置信度和位置信息。

这个界面展示了系统对视频帧中的多目标检测能力,能够准确识别老年人情绪状态,并提供详细的检测结果和置信度评分。

5.摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

检测结果:系统连接摄像头进行实时分析,检测到老年人情绪状态并显示检测结果。实时显示摄像头画面,并将检测到的行为位置标注在图像上,表格下方记录了每一帧中检测结果的详细信息。

6.保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片(含批量图片)或者视频的检测结果进行保存。
检测的图片与视频结果会存储在save_data目录下。
保存的检测结果文件如下:

图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。

(1)图片保存

(2)视频保存

– 运行 train.py
1.训练参数设置

(1)data=data_yaml_path: 使用data.yaml中定义的数据集。
(2)epochs=150: 训练的轮数设置为150轮。
(3)batch=4: 每个批次的图像数量为4(批次大小)。
(4)name=’train_v8′: 训练结果将保存到以train_v8为名字的目录中。
(5)optimizer=’SGD’: 使用随机梯度下降法(SGD)作为优化器。

虽然在大多数深度学习任务中,GPU通常会提供更快的训练速度。
但在某些情况下,可能由于硬件限制或其他原因,用户需要在CPU上进行训练。

温馨提示:在CPU上训练深度学习模型通常会比在GPU上慢得多,尤其是像YOLOv8这样的计算密集型模型。除非特定需要,通常建议在GPU上进行训练以节省时间。

2.训练日志结果

这张图展示了使用YOLOv8进行模型训练的详细过程和结果。

训练总时长:
(1)模型在训练了150轮后,总共耗时11.101小时。

总体分析:
(1)从整体上看,所有类别的平均精度(mAP50 和 mAP50-95)都达到了 0.829,这表明模型在情感分类任务上表现良好。
(2)精度(Box(P)) 和 召回率(R) 也反映出模型在不同情感类别上的表现。较高的精度和召回率表明模型在该任务中的性能平衡较好。例如,“高兴”类的表现尤为突出,精度为 0.892,召回率为 0.865,mAP50 甚至达到 0.956。
(3)在“厌恶”和“平和”类别中,模型的 mAP50 分别为 0.837 和 0.723,表明这两个类别的检测相对其他类别稍弱。

速度:
(1)预处理(preprocess):0.2毫秒
(2)推理(inference):0.3毫秒
(3)后处理(postprocess):0.9毫秒

结果保存:
(1)Results saved to runs\detect\train_v8:验证结果保存在 runs\detect\train_v8 目录下。

完成信息:
(1)Process finished with exit code 0:表示整个验证过程顺利完成,没有报错。

该图展示了YOLOv8模型在不同情感类别上的检测效果较为均衡,尤其是在“快乐”和“惊讶”类别上表现突出,而在“平和”类别上的表现略差一些。整体的平均精度指标(mAP50和mAP50-95)显示了模型的稳定性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2244375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于SSM的农家乐管理系统+论文示例参考

1.项目介绍 功能模块:管理员(农家乐管理、美食信息管理、住宿信息管理、活动信息、用户管理、活动报名、论坛等),普通用户(注册登录、活动报名、客房预订、用户评价、收藏管理、模拟支付等)技术选型&#…

小米顾此失彼:汽车毛利大增,手机却跌至低谷

科技新知 原创作者丨依蔓 编辑丨蕨影 三年磨一剑的小米汽车毛利率大增,手机业务毛利率却出现下滑景象。 11月18日,小米集团发布 2024年第三季度财报,公司实现营收925.1亿元,同比增长30.5%,预估902.8亿元;…

【环境搭建】使用IDEA远程调试Docker中的Java Web

有时候要对Docker的Java Web远程调试其功能,于是就需要使用IDEA的远程调试功能,记录一下简单配置方法。 以Kylin4.0.0为例,首先拉取镜像并启动容器: $ docker pull apachekylin/apache-kylin-standalone:4.0.0$ docker run -d \-…

【AI图像生成网站Golang】项目架构

AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构 五、图床上传与图像生成API搭建 六、项目测试与调试(等待更新) 四、项目架构 本项目的后端基于Golang和Gin框架开发,主要包括的模块有: backend/ ├── …

Centos7安装Jenkins脚本一键部署

公司原先Jenkins二进制安装,自己闲来无事在测试主机优化了一下,一键部署,jenkins2.426版本jdk11版本 #!/bin/bashjenkins_file"jenkins-2.426.3-1.1.noarch.rpm"# 更新软件包列表 echo "更新软件包列表..." sudo yum up…

【WPF】Prism学习(五)

Prism Commands 1.错误处理(Error Handling) Prism 9 为所有的命令(包含AsyncDelegateCommand)提供了更好的错误处理。 避免用try/catch包装每一个方法根据不同遇到的异常类型来提供特定的逻辑处理可以在多个命令之间共享错误处…

Ubuntu 18.04 配置sources.list源文件(无法安全地用该源进行更新,所以默认禁用该源)

如果你 sudo apt update 时出现诸如 无法安全地用该源进行更新,所以默认禁用该源 的错误,那就换换源吧,链接: https://mirror.tuna.tsinghua.edu.cn/help/ubuntu/ 注意版本: 修改源文件: sudo nano /etc…

C++ —— 剑斩旧我 破茧成蝶—C++11

江河入海,知识涌动,这是我参与江海计划的第2篇。 目录 1. C11的发展历史 2. 列表初始化 2.1 C98传统的{} 2.2 C11中的{} 2.3 C11中的std::initializer_list 3. 右值引用和移动语义 3.1 左值和右值 3.2 左值引用和右值引用 3.3 引用延长生命周期…

04 - Clickhouse-21.7.3.14-2单机版安装

目录 一、准备工作 1、确定防火墙处于关闭状态 2、CentOS 取消打开文件数限制 3、安装依赖 4、CentOS取消SELINUX 二、单机安装 2.1、下载安装 2.2、安装这4个rpm包 2.3、修改配置文件 2.4、启动服务 2.5、关闭开机自启 2.6、使用Client连接server 一、准备工作 1…

STM32设计学生宿舍监测控制系统-分享

目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 电路图采用Altium Designer进行设计: 三、实物设计图 四、程序源代码设计 五、获取资料内容 前言 本项目旨在利用STM32单片机为核心,结合传感器技术、无线通信技…

macOS 的目录结构

文章目录 根目录 (/)常见目录及其用途示例目录结构注意事项根目录 (/)主要目录及其含义其他目录总结 macOS 的目录结构无论是在 Intel 架构还是 ARM 架构的 Mac 电脑上都是相同的。macOS 的目录结构遵循 Unix 和 BSD 的传统,具有许多标准目录。以下是一些主要目录及…

日常ctf

15, [MoeCTF 2021]Web安全入门指北—小饼干 直接改就行了 16, [MoeCTF 2021]2048 传入参数就获取到flag了 /flag.php?score500000000 17, [SWPUCTF 2022 新生赛]funny_web 账户密码是 NSS 2122693401 登录进去查看源码 考intval缺陷&…

【java】java入门

盘符名称冒号---------盘符切换 dir---------------查看当前路径下的内容 cd目录--------进入单级目录 cd..----------回退到上一级目录 cd \----------回退到盘符目录 cls----------清屏 exit 为什么要配环境变量? 在任意的目录下都可以打开指定的软件。把软件的路…

网络安全检测技术

一,网络安全漏洞 安全威胁是指所有能够对计算机网络信息系统的网络服务和网络信息的机密性,可用性和完整性产生阻碍,破坏或中断的各种因素。安全威胁可分为人为安全威胁和非人为安全威胁两大类。 1,网络安全漏洞威胁 漏洞分析的…

【大数据学习 | flume】flume的概述与组件的介绍

1. flume概述 Flume是cloudera(CDH版本的hadoop) 开发的一个分布式、可靠、高可用的海量日志收集系统。它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到HDFS、Hbase,简单来说flume就是收集日志的。 Flume两个版本区别: ​ 1&…

如何高效实现汤臣倍健营销云数据集成到SQLServer

新版订单同步-(Life-Space)江油泰熙:汤臣倍健营销云数据集成到SQL Server 在企业信息化建设中,数据的高效集成和管理是提升业务运营效率的关键。本文将分享一个实际案例——如何通过新版订单同步方案,将汤臣倍健营销云…

Ubuntu22.04安装CH343驱动并创建udev规则

驱动说明 Linux系统提供CH34*系列 USB UART 设备配合使用的默认 CDC-ACM 驱动程序。驱动程序文件名为CDC-ACM。CDC-ACM 驱动程序控制特定设备的能力有限。此通用驱动程序不了解特定设备协议。因此,设备制造商可以创建能够访问设备特定功能集(例如硬件流…

2.8 群辉 黑群晖 意味断电 抱歉,您所指定的页面不存在。

实验室组装的黑群晖施工时不小心被意味断电,然后出现了如下图: 对于7.1.1的系统来说,这个是由于libsynopkg.so.1和libsynoshare.so.7这两个文件出问题所致。 因此,解决方法也比较简单就是把好的文件恢复到/lib文件夹下即可。 这…

Flutter:key的作用原理(LocalKey ,GlobalKey)

第一段代码实现的内容:创建了3个块,随机3个颜色,每次点击按钮时,把第一个块删除 import dart:math; import package:flutter/material.dart; import package:flutter_one/demo.dart;void main() {runApp(const App()); }class App…

服务器上部署并启动 Go 语言框架 **GoZero** 的项目

要在服务器上部署并启动 Go 语言框架 **GoZero** 的项目,下面是一步步的操作指南: ### 1. 安装 Go 语言环境 首先,确保你的服务器上已安装 Go 语言。如果还没有安装,可以通过以下步骤进行安装: #### 1.1 安装 Go 语…