定义: 令
k
≤
n
≤
q
k\le n\le q
k≤n≤q,
α
∈
F
q
n
\alpha\in\mathbb{F}_q^n
α∈Fqn是n元组(
α
=
(
α
1
,
.
.
.
,
α
n
)
,
α
i
≠
α
j
,
∀
i
≠
j
∈
{
1
,
.
.
.
,
n
}
\alpha=(\alpha_1,...,\alpha_n),\alpha_i\ne \alpha_j,\forall i\ne j\in \{1,...,n\}
α=(α1,...,αn),αi=αj,∀i=j∈{1,...,n})。令
β
∈
F
q
n
\beta\in\mathbb{F}_q^n
β∈Fqn,
β
=
(
β
1
,
.
.
.
,
β
n
)
,
β
i
≠
0
,
∀
i
∈
{
1
,
.
.
.
,
n
}
\beta=(\beta_1,...,\beta_n),\beta_i\ne0,\forall i\in\{1,...,n\}
β=(β1,...,βn),βi=0,∀i∈{1,...,n}。长度
n
n
n维度
k
k
k的GRS码(
G
R
S
n
,
k
(
α
,
β
)
GRS_{n,k}(\alpha,\beta)
GRSn,k(α,β)):
G
R
S
n
,
k
(
α
,
β
)
=
{
(
β
1
f
(
α
1
)
,
.
.
.
,
β
n
f
(
α
n
)
)
∣
f
∈
F
q
[
x
]
,
d
e
g
(
f
)
<
k
}
GRS_{n,k}(\alpha,\beta)=\{(\beta_1f(\alpha_1),...,\beta_nf(\alpha_n))|f\in\mathbb{F}_q[x],deg(f)<k\}
GRSn,k(α,β)={(β1f(α1),...,βnf(αn))∣f∈Fq[x],deg(f)<k}
当 β = ( 1 , . . . , 1 ) \beta=(1,...,1) β=(1,...,1)时,称为RS码( R S n , k ( α ) RS_{n,k}(\alpha) RSn,k(α))。