(一)- DRM架构

news2025/1/20 16:57:38

一,DRM简介

linux内核中包含两类图形显示设备驱动框架:

  • FB设备:Framebuffer图形显示框架;

  • DRM:直接渲染管理器(Direct Rendering Manager),是linux目前主流的图形显示框架;

1,Frambebuffer驱动

Frambebuffer驱动具有以下特征:

  • 直接控制显卡的帧缓冲区,提供基本的显卡输出功能;

  • 使用一些内核数据结构和API来管理图形界面,并提供一组接口与用户空间的应用程序进行通信;

  • 相对简单,适合于嵌入式系统或者不需要高性能图形的应用场景。

2,DRM驱动

相比FB(Framebuffer)架构,DRM更能适应当前日益更新的显示硬件;

  • 提供一种分离的图形驱动架构,将硬件驱动程序、内核模块和用户空间驱动程序进行分离;

  • 支持多个应用程序同时访问显卡,并提供了更丰富的图形功能,例如硬件加速和3D加速;

  • 提供了一些内核接口,可以让用户空间应用程序与驱动程序进行交互;

  • 支持多显示器(Display)和多GPU的配置;

总之,一句话,DRM是Linux目前主流的图形显示框架,相比FB架构,DRM更能适应当前日益更新的显示硬。尽管FB退出历史舞台,但是并未将其遗弃,而是集合到DRM中,供部分嵌入式设备使用。

二,DRM框架

DRM是Linux目前主流的图形显示框架,相比FB架构,DRM更能适应当前日益更新的显示硬件。比如FB原生不支持多层合成,不支持VSYNC,不支持DMA-BUF,不支持异步更新,不支持fence机制等等,而这些功能DRM原生都支持。同时DRM可以统一管理GPU和Display驱动,使得软件架构更为统一,方便管理和维护

1,DRM模块划分

DRM从模块上划分,可以简单分为3部分:libdrm、KMS、GEM

1)libdrm

对底层接口进行封装,向上层提供通用的API接口,主要是对各种IOCTL接口进行封装。

2)KMS

Kernel Mode Setting,所谓Mode setting,其实说白了就两件事:更新画面和设置显示参数。

更新画面:显示buffer的切换,多图层的合成方式,以及每个图层的显示位置。

设置显示参数:包括分辨率、刷新率、电源状态(休眠唤醒)等。

3)GEM

Graphic Execution Manager,主要负责显示buffer的分配和释放,也是GPU唯一用到DRM的地方。

2,基本元素

DRM框架涉及到的元素很多,大致如下:

KMS:CRTC,ENCODER,CONNECTOR,PLANE,FB,VBLANK,property

GEM:DUMB、PRIME、fence

object

说明

plane

硬件图层,有的Display硬件支持多层合成显示,但所有的Display Controller至少要有1个plane

CRTC

对显示buffer进行扫描,并产生时序信号的硬件模块,通常指Display Controller

encoder

负责将CRTC输出的timing时序转换成外部设备所需要的信号的模块,如HDMI转换器或DSI Controller

connector

连接物理显示设备的连接器,如HDMI、DisplayPort、DSI总线,通常和Encoder驱动绑定在一起

framebuffer

Framebuffer,单个图层的显示内容,唯一一个和硬件无关的基本元素

VBLANK

软件和硬件的同步机制,RGB时序中的垂直消影区,软件通常使用硬件VSYNC来实现

property

任何你想设置的参数,都可以做成property,是DRM驱动中最灵活、最方便的Mode setting机制

DUMB

只支持连续物理内存,基于kernel中通用CMA API实现,多用于小分辨率简单场景

PRIME

连续、非连续物理内存都支持,基于DMA-BUF机制,可以实现buffer共享,多用于大内存复杂场景

fence

buffer同步机制,基于内核dma_fence机制实现,用于防止显示内容出现异步问题

 学习DRM驱动其实就是学习上面各个元素的实现及用法。

三,objects

在开始编写 DRM 驱动程序之前,我有必要对 DRM 内部的 Objects 进行一番介绍。因为这些 Objects 是 DRM 框架的核心,它们缺一不可。

上图蓝色部分则是对物理硬件的抽象,黄色部分则是对软件的抽象。虚线以上的为 drm_mode_object,虚线以下为 drm_gem_object。

这些 objects 的概念:

object

说明

crtc

RGB 信号发生源(TCON),显存切换控制器(Dislay Controller)

plane

Display Controller 的数据源通道,每个 crtc 至少要有一个 plane

encoder

RGB 信号转换器(DSI Contoller),同时也控制显示设备的休眠唤醒

connector

凡是能获取到显示参数的硬件设备,但通常和 encoder 绑定在一起

framebuffer

只用于描述显存信息(如 format、pitch、size 等),不负责显存的分配释放

property

atomic 操作的基础,任何想要修改的参数都可以做成 property,供用户空间使用

gem

负责显存的分配、映射和释放

 这些 objects 之间的关系:

通过上图可以看到,plane 是连接 framebuffer 和 crtc 的纽带,而 encoder 则是连接 crtc 和 connector 的纽带。与物理 buffer 直接打交道的是 gem 而不是 framebuffer。

需要注意的是,上图蓝色部分即使没有实际的硬件与之对应,在软件驱动中也需要实现这些 objects,否则 DRM 子系统无法正常运行。

四,drm_panel

drm_panel 不属于 objects 的范畴,它只是一堆回调函数的集合。但它的存在降低了 LCD 驱动与 encoder 驱动之间的耦合度。

耦合的产生:

(1)connector 的主要作用就是获取显示参数,所以会在 LCD 驱动中去构造 connector object。但是 connector 初始化时需要 attach 上一个 encoder object,而这个 encoder object 往往是在另一个硬件驱动中生成的,为了访问该 encoder object,势必会产生一部分耦合的代码。

(2)encoder 除了扮演信号转换的角色,还担任着通知显示设备休眠唤醒的角色。因此,当 encoder 通知 LCD 驱动执行相应的 enable/disable 操作时,就一定会调用 LCD 驱动导出的全局函数,这也必然会产生一部分的耦合代码。

为了解决该耦合的问题,DRM 子系统为开发人员提供了 drm_panel 结构体,该结构体封装了 connector & encoder 对 LCD 访问的常用接口。

于是,原来的 Encoder 驱动和 LCD 驱动之间的耦合,就转变成了上图中 Encoder 驱动与 drm_panel、drm_panel 与 LCD 驱动之间的“耦合”,从而实现了 Encoder 驱动与 LCD 驱动之间的解耦合。

为了方便驱动程序设计,通常都将 encoder 与 connector 放在同一个驱动中初始化,即 encoder 在哪,connector 就在哪。

五,如何抽象硬件

对于初学者来说,往往让他们迷惑的不是 DRM 中 objects 的概念,而是如何去建立这些 objects 与实际硬件的对应关系。因为并不是所有的 Display 硬件都能很好的对应上 plane/crtc/encoder/connector 这些 objects。下面我们就来一起学习,如何去抽象显示硬件到具体的 DRM object。

1,MIPI DSI 接口

下图为一个典型的 MIPI DSI 接口屏的硬件连接框图:

它在软件架构上与 DRM object 的对应关系如下图:

多余的细节不做介绍,这里只说明为何如此分配 drm object:

object

说明

crtc

RGB timing的产生,以及显示数据的更新,都需要访问 Dislay Controller 硬件寄存器,因此放在 Display Controller 驱动中

plane

对 Overlay 硬件的抽象,同样需要访问 Display Controller 寄存器,因此也放在 Display Controller 驱动中

encoder

将 RGB 并行信号转换为 DSI 串行信号,需要配置 DSI 硬件寄存器,因此放在 DSI Controller 驱动中

connector

可以通过 drm_panel 来获取 LCD 的 mode 信息,但是 encoder 在哪,connector 就在哪,因此放在 DSI Controller 驱动中

drm_panel

用于获取 LCD mode 参数,并提供 LCD 休眠唤醒的回调接口,供 encoder 调用,因此放在 LCD 驱动中

驱动参考:https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/panel/panel-ilitek-ili9881c.c

2,MIPI DPI 接口

DPI 接口也就是我们常说的 RGB 并行接口,Video 数据通过 RGB 并行总线传输,控制命令(如初始化、休眠、唤醒等)则通过 SPI/I2C 总线传输,比如早期的 S3C2440 SoC 平台。下图为一个典型的 MIPI DPI 接口屏的硬件连接框图:

该硬件连接在软件架构上与 DRM object 的对应关系如下图:

多余的细节不做介绍,这里只说明为何如此分配 drm object:

object

说明

crtc

RGB timing的产生,以及显示数据的更新,都需要访问 LCD Controller 硬件寄存器,因此放在 LCD Controller 驱动中

plane

LCDC 没有 Overlay 硬件,它只有一个数据源通道,被抽象为 Primary Plane,同样需要访问 LCDC 硬件寄存器,因此放在 LCDC 驱动中

encoder

由于 DPI 接口本身不需要对 RGB 信号做任何转换,因此没有哪个硬件与之对应。但是 drm objects 又缺一不可,因此实现了一个虚拟的 encoder object。至于为什么要放在 LCDC 驱动中实现,纯粹只是为了省事而已,你也可以放在一个虚拟的平台驱动中去实现该 encoder object。

connector

encoder 在哪,connector 就在哪,没什么好说的了

drm_panel

用于获取 LCD mode 参数,并提供 LCD 休眠唤醒的回调接口,供 encoder 调用,因此放在 LCD 驱动中

驱动参考:https://elixir.bootlin.com/linux/v5.0/source/drivers/gpu/drm/panel/panel-sitronix-st7789v.c

3,MIPI DBI 接口

DBI 接口也就是我们平时常说的 MCU 或 SPI 接口屏,这类屏的 VIDEO 数据和控制命令都是通过同一总线接口(I80、SPI接口)进行传输,而且这类屏幕必须内置 GRAM 显存,否则屏幕无法维持正常显示。

下图为一个典型的 DBI 接口屏的硬件连接框图:

该硬件连接在软件架构上与 DRM object 的对应关系如下:

上图参考 kernel4.19 tinydrm 软件架构。

object

说明

crtc

这类硬件本身不需要任何 RGB timing 信号,因此也没有实际的硬件与之对应。但是 drm objects 缺一不可,需要实现一个虚拟的 crtc object。由于更新图像数据的动作需要通过 SPI 总线发送命令才能完成,因此放在了 LCD 驱动中

plane

没有实际的硬件与之对应,但 crtc 初始化时需要一个 plane object 作为参数传递,因此和 crtc 放在一起

encoder

没有实际的硬件与之对应,使用虚拟的 encoder object。因为这类硬件并不是将 RGB 信号转换为 SPI 信号,而是根本就没有 RGB 信号源,也就无从谈起 encoder 设备。但是为了通知 LCD 休眠唤醒,需要调用 LCD 驱动的相应接口,因此放在 LCD 驱动中

connector

由于没有了 drm_panel,需要调用 LCD 接口来获取 mode 参数,因此放在 LCD 驱动中

 驱动参考:https://elixir.bootlin.com/linux/latest/source/drivers/gpu/drm/tinydrm/ili9341.c

 

六,总结

  • 这 7 个 objects 缺一不可

  • framebuffer 只是负责描述显存信息,gem 则负责显存的分配/释放等操作

  • encoder 在哪里,connector 就在哪里

参考链接:

DRM(Direct Rendering Manager)学习简介-CSDN博客

DRM 驱动程序开发(开篇)_spi 何小龙 csdn-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2242971.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【PHP】ThinkPHP基础

下载composer ComposerA Dependency Manager for PHPhttps://getcomposer.org/ 安装composer 查看composer是否安装 composer composer --version 安装 ThinkPHP6 如果你是第一次安装的话,首次安装咱们需要打开控制台: 进入后再通过命令,在命令行下面&a…

Elasticsearch基本概念及使用

Elasticsearch 是一个开源的、分布式的全文搜索和分析引擎,基于 Apache Lucene 构建。它提供了快速的搜索能力,支持大规模的数据分析,广泛应用于日志分析、全文搜索、监控系统和商业智能等领域。ES操作指令是基于restAPI构建,也就…

黑马智慧商城项目学习笔记

目录 智慧商城项目创建项目调整初始化目录vant组件库vant按需导入和全部导入 项目中的vw适配路由设计配置登录页静态布局图形验证码功能request模块-axios封装api模块-封装图片验证码接口 Toast轻提示(vant组件)短信验证倒计时功能登录功能响应拦截器统一…

攻防世界Web-bug

打开链接 先注册一个账号 创建成功,会给一个UID5 抓包的user值就是UID:用户名的md5加密的编码 点击Manage时要求admin用户 利用改包把user改成admin 1:admin的md5值为4b9987ccafacb8d8fc08d22bbca797ba 还要把url上的UID改为1 存在逻辑漏洞,成功越权 …

apk反编译修改教程系列-----apk应用反编译中AndroidManifest.xml详细代码释义解析 包含各种权限 代码含义【二】

💝💝💝💝在上期博文中解析了一个常规apk中 AndroidManifest.xml的权限以及代码。应粉丝需求。这次解析一个权限较高的apk。这款apk是一个家长管控的应用。需求的各种权限较高。而且通过管控端可以设置控制端的app隐藏与否。 通过博文了解💝💝💝💝 1💝💝…

湘潭大学软件工程算法设计与分析考试复习笔记(一)

文章目录 前言随机类(第七章)随机概述数值随机化舍伍德拉斯维加斯蒙特卡罗 模拟退火遗传人工神经网络 回溯(第五章)动态规划(第四章)后记 前言 考试还剩十一天,现在准备开始复习这门课了。好像全…

如何使用正则表达式验证域名

下面是一篇关于如何使用正则表达式验证域名的教程。 如何使用正则表达式验证域名 简介 域名是互联网上网站的地址,每个域名由多个标签(label)组成,标签之间用点 . 分隔。域名规则有很多细节,但基本要求是&#xff1a…

【Cesium】自定义材质,添加带有方向的滚动路线

【Cesium】自定义材质,添加带有方向的滚动路线 🍖 前言🎶一、实现过程✨二、代码展示🏀三、运行结果🏆四、知识点提示 🍖 前言 【Cesium】自定义材质,添加带有方向的滚动路线 🎶一、…

DDoS高防服务器:保障业务安全和稳定的抗攻击利器

摘要 随着网络攻击愈发频繁,尤其是DDoS(分布式拒绝服务)攻击的威胁不断增长,DDoS高防服务器成为保护企业网络安全的重要工具。本文将详细介绍DDoS高防服务器的原理、优势、应用场景及选择要点,帮助企业有效应对攻击&am…

vim配置 --> 在创建的普通用户下

在目录/etc/ 下面,有个名为vimrc 的文件,这是系统中公共的vim配置文件对所有用户都有效 我们现在创建一个普通用户 dm 创建好以后,我们退出重新链接 再切换到普通用户下 再输入密码(是不显示的,输入完后,…

Python 正则表达式使用指南

Python 正则表达式使用指南 正则表达式(Regular Expression, 简称 regex)是处理字符串和文本的强大工具。它使用特定的语法定义一组规则,通过这些规则可以对文本进行匹配、查找、替换等操作。Python 提供了 re 模块,使得正则表达…

Golang | Leetcode Golang题解之第565题数组嵌套

题目&#xff1a; 题解&#xff1a; func arrayNesting(nums []int) (ans int) {n : len(nums)for i : range nums {cnt : 0for nums[i] < n {i, nums[i] nums[i], ncnt}if cnt > ans {ans cnt}}return }

微服务day10-Redis面试篇

Redis主从 搭建主从集群 建立集群时主节点会生成同一的replicationID,交给各个从节点。 集群中的缓冲区是一个环型数组&#xff0c;即若从节点宕机时间过长&#xff0c;可能导致命令被覆盖。 主从集群优化 哨兵原理 哨兵是一个集群来确保哨兵不出现问题。 服务状态监控 选举…

排序算法 -快速排序

文章目录 1. 快速排序&#xff08;Quick Sort&#xff09;1.1、 简介1.2、 快速排序的步骤 2. Hoare 版本2.1、 基本思路1. 分区&#xff08;Partition&#xff09;2. 基准选择&#xff08;Pivot Selection&#xff09;3. 递归排序&#xff08;Recursive Sorting&#xff09; 2…

01、Spring MVC入门程序

概述&#xff1a; MVC(M&#xff1a;模型、V&#xff1a;视图、 C&#xff1a;控制器) 三层架构&#xff1a; 表现层&#xff08;Web层&#xff09;业务层&#xff08;Service层&#xff09;负责业务逻辑处理持久层&#xff08;Dao层&#xff09;负责和数据库交互 Spring MVC 作…

7.揭秘C语言输入输出内幕:printf与scanf的深度剖析

揭秘C语言输入输出内幕&#xff1a;printf与scanf的深度剖析 C语言往期系列文章目录 往期回顾&#xff1a; VS 2022 社区版C语言的安装教程&#xff0c;不要再卡在下载0B/s啦C语言入门&#xff1a;解锁基础概念&#xff0c;动手实现首个C程序C语言概念之旅&#xff1a;解锁关…

Android Osmdroid + 天地图 (一)

Osmdroid 天地图 前言正文一、配置build.gradle二、配置AndroidManifest.xml三、获取天地图的API Key① 获取开发版SHA1② 获取发布版SHA1 四、请求权限五、显示地图六、源码 前言 Osmdroid是一款完全开源的地图基本操作SDK&#xff0c;我们可以通过这个SDK去加一些地图API&am…

️️一篇快速上手 AJAX 异步前后端交互

AJAX 1. AJAX1.1 AJAX 简介1.2 AJAX 优缺点1.3 AJAX 前后端准备1.4 AJAX 请求基本操作1.5 AJAX 发送 POST 请求1.6 设置请求头1.7 响应 JSON 数据1.8 AJAX 请求超时与网络异常处理1.9 取消请求1.10 Fetch 发送 Ajax 请求 2. jQuery-Ajax2.1 jQuery 发送 Ajax 请求&#xff08;G…

2024年11月16日 星期六 重新整理Go技术

今日格言 坚持每天进步一点点~ 一个人也可以是一个团队~ 学习全栈开发, 做自己喜欢的产品~~ 简介 大家好, 我是张大鹏, 今天是2024年11月16日星期六, 很高兴在这里给大家分享技术. 今天又是休息的一天, 做了很多的思考, 整理了自己掌握的技术, 比如Java, Python, Golang,…

炼码LintCode--数据库题库(级别:简单;数量:55道)--刷题笔记_02

目录 炼码LintCode--数据库题库&#xff08;级别&#xff1a;简单&#xff1b;数量&#xff1a;55道&#xff09;--刷题笔记_023618 耗时前三的任务&#xff08;日期差&#xff09;题&#xff1a;sql&#xff1a;解释&#xff1a;DATEDIFF 天数差order by 别名TIMESTAMPDIFF 月…