基于碎纸片的拼接复原算法及MATLAB实现

news2025/1/3 7:19:47

一、问题描述

破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题:

(1)对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达。

(2)对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。

(3)上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件5给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

二、拼接中存在的几个主要问题及解决方案

为了将碎片拼接成一幅完整的图片,需要解决的问题有以下几个方面:

  1. 如何判断两个碎片是否为相邻碎片?
  2. 如何控制两两拼接的循环执行直至拼接完成?
  3. 如何判断碎片是否为边界碎片?
  4. 如果碎片的某个边界刚好完全是空白,则将其判断为原图的边界还是相邻文字的空隙?

(5) 对于既有纵切又有横切的单面图片,如何拼接?

(6) 对于对于既有纵切又有横切的双面图片,如何拼接?

 针对上述问题,我们给出以下解决方案:

1.问题(1)的解决方案

为了减少计算量和便于处理,我们将原灰度图像转换成二值图像,此转换不影响文字类图片的质量,也不会影响拼接效果。

一般而言,相邻碎片的边缘都具有很强的相似性,我们通过判断碎片矩阵的对应边界列的相似程度来确定两矩阵存储的碎片是否为相邻碎片。为了确定两列向量的相似程度,我们利用其信噪比值psnr来衡量,psnr的值越大,说明两者的相似程度越高。在拼接过程中可能会存在这种现象:也许存在多幅待拼碎片与已拼图片的信噪比相同,为了从中选择一幅正确的碎片作为当前碎片的邻接碎片,我们可以人为介入从语义上进行判断。也有可能待拼碎片与已拼图片的信噪比大,但是并不是已拼图片的邻接图片,反而次小信噪比的碎片是邻接碎片。这是因为用信噪比去衡量邻接碎片边缘的相似度也存在概率性误差。对于以上两种情况,我们都需要在程序运行期间进行人工干预,即程序在拼接时需要与用户进行交互。思想如下:拼接函数f2()和f3()拼接时都会将当前已拼图片与所有待拼碎片的信噪比进行求解,并将所得信噪比序列存入一维数组中,然后通过排序函数paixu2()进行自小而大的排序,然后通过循环控制,从已排序数组的最后一个元素逐个向前尝试,每尝试一次都要与用户交互,用户根据图片语义判断拼接正确与否,如果正确,则给出‘YES’的输入,程序终止拼接;如果否,则给出‘NO’的输入,程序继续尝试剩余碎片,直到找到正确邻接碎片为止。实验证明,用该种方法对单纯纵切碎片的情况非常有效。

2.问题(2)的解决方案

在拼接的过程中,需要考虑如下几种情况:

① 如果选取的第一幅碎片刚好是原图的左侧边缘碎片,则只需要在其右侧进行拼接,直到完毕。

② 如果选取的第一幅碎片刚好是原图的右侧边缘碎片,则只需要在其左侧进行拼接,直到拼接完毕。

③ 如果选取的第一幅碎片刚好是原图的内部某一碎片,则既要进行右侧拼接,又要进行左侧拼接。

针对以上三种情况,我们编写了两个拼接函数,其中函数f2()实现两碎片的右侧拼接,函数f3()实现两碎片的左侧拼接。通过反复调用两函数实现整幅图的拼接。为了确定是选择函数f2()还是函数f3(),依照以下思路进行:

从所有碎片中首先选择一个碎片,判断其是否为右侧边缘碎片,如果否,则对其进行右侧拼接,则反复调用右拼函数f2(),直到右边缘,然后再调用左拼函数f3()进行左拼,直到左边缘;如果是,则直接调用左拼函数f3()进行左拼,直到左边缘。

3.问题(3)的解决方案

在拼接过程中需要判断是否已经拼接到原图的边缘,为了解决该问题,我们在设计函数f2()和f3()时,分别用它们的返回值的一个分量来标志是否调用成功。如果函数按psnr的逆序试了所有剩余碎片都未能找到合适的碎片,说明当前待拼图片是边界图片, 此时返回值分量flag的值为0,否则返回1。

4.问题(4)的解决方案

对于此种情况可以不做特殊处理,只需要调用拼接函数f2()或f3()进行拼接。如果刚好是边界,而剩余碎片个数为n,则人机交互n次才能判断该图片为边界碎片,而且人为根据语义做出判断时,也浪费了很多精力。为了避免该情况发生,我们将边界完全为空白的情况处理为边界。也可以在程序中直接把该处理对应的代码去掉,其余代码不需做任何改动,不足是增加了人工干预次数。当然,我们假定,在纵切时没有刚好完全切在空白处的情况,否则程序会给出错误的结果。程序实现时,具体处理方法如下:以f2()为例,首先测试碎片矩阵的大小,如果该碎片矩阵的右侧边界分量各元素值的和与碎片的行数之差小于一个阀值,我们就认为该碎片为边缘碎片,停止拼接。因为碎片已被处理为二值图像,在二值图像中,白色像素值为1,黑色像素值为0,而边缘通常是纯白的,在考虑有极少杂色的情况下,我们给了一个阀值。左侧边缘判定方法一样。

5.问题(5)的解决方案

对于既有纵切又有横切的图片,我们按如下思想进行拼接:利用纵切图片的拼接思想首先将碎片拼接成多个横条图片,然后将每个横条图片的矩阵进行转置,最后再次利用纵切拼接思想对横条图片进行拼接,拼接完毕后,将得到的最终矩阵进行转置,最终得到整幅图片。在实现过程中,存在以下细节需要处理:

整个过程中需要多次调用纵切拼接函数将碎片拼接成多个横条图片,所以,需要在每次成功拼接一个横条图片时将当前已参与拼接的碎片从剩余碎片中分离出来,这就需要用到分离函数ff()。

6.问题(6)的解决方案

   单面纵横切的算法和思想完全可以拓展到双面纵横切的情形,区别在于:在将所有碎片拼接成横条形图片后,再进行横条拼接时要产生两幅图像。为了能生成两幅图像,需要在单面纵横切拼接算法的基础上做以下处理:在拼接过程中要将参与拼接的图片与剩余图片分离出来;从一个图片开始拼起,如果遇到两个边界都已经找到了,说明第一个图片已经拼接完毕,然后再将剩余碎片拼接成另一面图像。因时间关系,我们未能编程实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2240726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java项目-jenkins任务的创建和执行

参考内容: jenkins的安装部署以及全局配置 1.编译任务的general 2.源码管理 3.构建里编译打包然后copy复制jar包到运行服务器的路径 clean install -DskipTests -Pdev 中的-Pdev这个参数用于激活 Maven 项目中的特定构建配置(Profile) 在 pom.xml 文件…

【扩散——BFS】

题目 代码 #include <bits/stdc.h> using namespace std; const int t 2020, off 2020; #define x first #define y second typedef pair<int, int> PII; int dx[] {0, 0, 1, -1}, dy[] {-1, 1, 0, 0}; int dist[6080][6080]; // 0映射到2020&#xff0c;2020…

C++编程:利用环形缓冲区优化 TCP 发送流程,避免 Short Write 问题

文章目录 1. 什么是 Short Write 问题&#xff1f;2. 如何解决 Short Write 问题&#xff1f;2.1 方法 1&#xff1a;将 Socket 设置为阻塞模式2.2 方法 2&#xff1a;用户态维护发送缓冲区 3. 用户态维护发送缓冲区实现3.1 核心要点3.2 代码实现3.3 测试程序 参考文档 1. 什么…

数据网格能替代数据仓库吗?

一、数据网格是什么&#xff1f; 数据网格&#xff1a;是一种新兴的数据管理架构和理念&#xff0c;主要用于解决大规模、复杂数据环境下的数据管理和利用问题。 核心概念&#xff1a; 1、数据即产品&#xff1a;将数据看作一种产品&#xff0c;每个数据域都要对其生产的数据负…

力扣经典面试26题删除有序数组中的重复项1

给你一个非严格递增排列的数组nums&#xff0c;请你原地删除重复出现的元素&#xff0c; 使每个元素 只出现一次&#xff0c;返回删除后数组的新长度。元素的相对顺序 应该保持 一致。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k&#xff0c; 你需要做以…

LLM: AI Mathematical Olympiad (上)

文章目录 一、项目简介二、first place 攻略三、必备知识1、COT思维链技术2、ToRA 四、first place 训练功略五、数据集构建1、COT数据集2、TIR数据集 六、数据集详细技术报告总结 本文较长分成两个部分分析 | ू•ૅω•́)ᵎᵎᵎ 第一部分&#xff1a;预备知识介绍和数据准备…

GA/T1400视图库平台EasyCVR视频融合平台HLS视频协议是什么?

在数字化时代&#xff0c;视频监控系统已成为保障安全、提升效率的关键技术。EasyCVR视频融合云平台&#xff0c;作为TSINGSEE青犀视频在“云边端”架构体系中的重要一环&#xff0c;专为大中型项目设计&#xff0c;提供了一个跨区域、网络化的视频监控综合管理系统平台。它不仅…

给阿里云OSS绑定域名并启用SSL

为什么要这么做&#xff1f; 问题描述&#xff1a; 当用户通过 OSS 域名访问文件时&#xff0c;OSS 会在响应头中增加 Content-Disposition: attachment 和 x-oss-force-download: true&#xff0c;导致文件被强制下载而不是预览。这个问题特别影响在 2022/10/09 之后新开通 OS…

`node-gyp` 无法找到版本为 `10.0.19041.0` 的 Windows SDK

从你提供的错误信息来看&#xff0c;问题出在 node-gyp 无法找到版本为 10.0.19041.0 的 Windows SDK。我们可以尝试以下几种方法来解决这个问题&#xff1a; 完整示例 方法 1&#xff1a;安装指定版本的 Windows SDK 下载并安装 Windows SDK&#xff1a; 访问 Windows SDK 下…

【Hive】【HiveQL】【大数据技术基础】 实验四 HBase shell命令实验

实验四&#xff1a;熟悉常用的HBase操作 实验概览 在本次实验中&#xff0c;我们将深入探索HBase在Hadoop生态系统中的角色&#xff0c;并熟练掌握常用的HBase Shell命令和Java API操作。通过这些实践&#xff0c;我们能够更好地理解HBase的工作原理以及如何在实际项目中应用。…

3D意识(3D Awareness)浅析

一、简介 3D意识&#xff08;3D Awareness&#xff09;主要是指视觉基础模型&#xff08;visual foundation models&#xff09;对于3D结构的意识或感知能力&#xff0c;即这些模型在处理2D图像时是否能够理解和表示出图像中物体或场景的3D结构&#xff0c;其具体体现在编码场景…

快递面单批量导入打印软件小程序下载 佳易王网店快递面单批量打印管理系统操作教程

一、概述 【软件文件资源在文章最后】 快递面单批量导入打印软件小程序下载 快递面单批量打印管理系统操作教程 直接使用快递空白单打印&#xff0c;可以扫描条码并可以查询快递信息&#xff0c;面单内容可以自定义。 可以批量导入批量打印&#xff0c;从而提高效率节省时间…

缓冲区溢出,数据被踩的案例学习

继续在ubuntu上学习GDB&#xff0c;今天要学习的是缓冲区溢出。 程序的地址&#xff1a; GitHub - gedulab/gebypass: bypass password by heap buffer overflow 编译的方法&#xff1a; gcc -g -O2 -o gebypass gebypass.c 照例设置一下科学shangwang代理&#xff1a; e…

数据库SQL——连接表达式(JOIN)图解

目录 一、基本概念 二、常见类型 内连接&#xff08;INNER JOIN&#xff09;&#xff1a; 左连接&#xff08;LEFT JOIN 或 LEFT OUTER JOIN&#xff09;&#xff1a; 右连接&#xff08;RIGHT JOIN 或 RIGHT OUTER JOIN&#xff09;&#xff1a; 全连接&#xff08;FULL…

sql注入之二次注入(sqlilabs-less24)

二阶注入&#xff08;Second-Order Injection&#xff09;是一种特殊的 SQL 注入攻击&#xff0c;通常发生在用户输入的数据首先被存储在数据库中&#xff0c;然后在后续的操作中被使用时&#xff0c;触发了注入漏洞。与传统的 SQL 注入&#xff08;直接注入&#xff09;不同&a…

查询DBA_FREE_SPACE缓慢问题

这个是一个常见的问题&#xff0c;理论上应该也算是一个bug&#xff0c;在oracle10g&#xff0c;到19c&#xff0c;我都曾经遇到过&#xff1b;今天在给两套新建的19C RAC添加监控脚本时&#xff0c;又发现了这个问题&#xff0c;在这里记录一下。 Symptoms 环境&#xff1a;…

实验6记录网络与故障排除

实验6记录网络与故障排除 实验目的及要求&#xff1a; 通过实验&#xff0c;掌握如何利用文档记录网络设备相关信息并完成网络拓扑结构的绘制。能够使用各种技术和工具来找出连通性问题&#xff0c;使用文档来指导故障排除工作&#xff0c;确定具体的网络问题&#xff0c;实施…

「QT」文件类 之 QTextStream 文本流类

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「QT」QT5程序设计&#x1f4da;全部专栏「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C」C/C程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定制…

【go从零单排】JSON序列化和反序列化

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 语言中&#xff0c;处理 JSON 数据主要依赖于 encoding/json 包。这个包提…

网络学习第四篇

引言&#xff1a; 我们在第三篇的时候出现了错误&#xff0c;我们要就行排错&#xff0c;那么我们要知道一下怎么配置静态路由实现ping通&#xff0c;这样子我们才知道下一跳到底是什么&#xff0c;为什么这样子做。 实验目的 理解和掌握静态路由的基本概念和配置方法。 实…