大数据相关技术的基本概念?

news2024/11/14 3:51:39

一、Hadoop

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统(Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

1.高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
2.高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
3.高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
4.高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
5.低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

二、HDFS

HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large dataset)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

三、MapReduce

‌MapReduce是一种用于处理大规模数据集的编程模型,主要用于分布式计算。‌它的核心思想是将大数据处理任务分解为两个主要步骤:Map和Reduce。在Map阶段,输入数据被分解成一系列的键值对,这些键值对会被传送到对应的Reduce任务中进行处理。Reduce阶段则将这些键值对进行处理,最终生成一个结果。

四、Hive

‌Hive‌是一个基于Hadoop的数据仓库工具,主要用于存储、查询和分析存储在Hadoop中的大规模数据。Hive可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能,适合离线数据处理‌。
Hive的核心功能包括: ‌(1)数据存储‌:Hive可以存储大规模数据,这些数据通常存储在HDFS(Hadoop分布式文件系统)中。
(2)‌数据查询‌:用户可以通过类SQL的查询语言(HiveQL)对存储在Hive中的数据进行查询和分析。
‌(3)数据处理‌:Hive将SQL查询转化为MapReduce任务进行计算,利用Hadoop的分布式计算能力进行大规模数据处理‌。
Hive的架构和运行机制: ‌(1)底层存储‌:Hive的数据存储在HDFS上。
‌(2)数据处理‌:Hive将SQL查询转化为MapReduce任务进行计算,利用Hadoop的分布式计算能力进行数据处理。
‌用户接口‌:用户可以通过HiveQL(类似SQL的语言)进行数据查询和分析‌。
总之,Hive是一个强大的数据仓库工具,特别适合处理大规模的离线数据。

五、Spark

1.概念

‌Spark‌是一个基于内存的快速、通用、可扩展的大数据分析计算引擎,由加州大学伯克利分校的AMP实验室开发。它是一个分布式计算平台,主要用于处理大规模数据集,特别适用于数据挖掘和机器学习等需要迭代的计算任务‌。

2.Spark的特点

‌(1)内存计算‌:Spark能够在内存中运行计算,避免了MapReduce模型中多次读写磁盘的IO开销,显著提高了数据处理速度‌12。
‌(2)多种语言支持‌:Spark支持Java、Scala、Python、R和SQL等多种语言,使得开发更加灵活‌。
(3)‌通用性强‌:提供了多个工具库,包括Spark SQL、Spark Streaming、MLlib、GraphX等,适用于批处理、流处理、机器学习和图计算等多种场景‌。
‌(4)运行方式多样‌:可以在Hadoop、Mesos、Kubernetes等平台上运行,也支持独立的Standalone模式‌。

3.Spark与Hadoop的关系

    Spark和Hadoop是两个不同的数据处理框架,但经常被放在一起讨论。Hadoop是一个包含HDFS、MapReduce和Yarn的生态系统,主要用于数据的存储和批处理。而Spark则专注于数据处理,特别是实时数据处理和迭代计算。Spark的出现是为了弥补Hadoop在实时数据处理和交互式查询方面的不足,因此被视为Hadoop的升级版‌。

4.Spark的应用场景

(1)‌批处理‌:适用于大规模数据集的离线处理,如数据仓库的更新和维护。
(2)‌流处理‌:通过Spark Streaming,实时处理数据流,适用于需要快速响应的应用场景。
‌(3)机器学习‌:利用MLlib,进行分类、回归、聚类等机器学习任务。
(4)‌图计算‌:通过GraphX,处理大规模图数据,适用于社交网络分析等应用。

综上所述,Spark凭借其内存计算、多种语言支持和强大的工具库,成为大数据处理领域的重要工具,特别是在实时数据处理和迭代计算方面表现出色。

六、Flink

1.Flink概念

‌Apache Flink‌是一个开源的分布式处理引擎,主要用于对无界和有界数据流进行有状态的计算。Flink设计用于在所有常见的集群环境中运行,能够在内存中以极高的速度和任意规模执行计算‌。

2.Flink的核心特点

(1) ‌高吞吐、低延迟‌:Flink能够在保证高吞吐的同时,提供低延迟的处理能力。
(2) ‌精确的状态一致性保证‌:Flink能够确保状态的一致性,即使在分布式环境中也能保证数据处理的准确性。
‌(3) 容错能力强‌:Flink具有强大的容错能力,能够在节点故障时恢复状态,保证数据的完整性。
‌(4) 批流一体化‌:Flink支持批处理和流处理,能够处理有界和无界数据流,适用于离线和实时数据处理场景‌。

3.Flink与其他大数据处理框架的对比

(1)‌与Spark对比‌:Spark采用RDD模型,而Flink的基本数据模型是数据流和时间序列。Spark是批处理框架,而Flink是标准的流处理模式,适合处理实时数据流‌。
(2)‌与Kafka对比‌:Kafka主要用于消息队列,而Flink可以处理Kafka中的消息流,实现更复杂的实时数据处理和分析‌。

综上所述,Apache Flink是一个功能强大的分布式处理引擎,适用于各种大数据场景,特别是在需要高吞吐、低延迟和精确状态管理的应用中表现出色。

七、YARN

1.概念

‌YARN(Yet Another Resource Negotiator)‌是一个Hadoop生态系统中的资源管理系统,主要负责为大数据处理框架提供统一的资源管理和调度服务。YARN的设计目标是创建一个通用的资源管理系统,支持多种计算框架和应用程序的同时运行,包括长应用程序和短应用程序‌。

2.YARN的基本架构和功能

YARN主要由以下几个核心组件构成:
‌(1)ResourceManager(RM)‌:负责集群资源的统一管理和调度,处理客户端请求,监控。(2)NodeManager,分配资源给ApplicationMaster‌。
‌(3)NodeManager(NM)‌:管理单个节点上的资源,执行来自ResourceManager和ApplicationMaster的命令‌。
(4)‌ApplicationMaster(AM)‌:负责应用程序的管理,申请资源并分配给内部任务,监控任务执行‌。
‌(5)Container‌:对任务运行环境的抽象,封装了某个节点上的多维度资源,如内存、CPU、磁盘网络等‌。

八、HBase

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。
Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239887.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文读懂什么是RAG?附MindSpore和MindNLP实现的TinyRAG框架

什么是RAG? 首先我们给出RAG的定义:RAG(Retrieval-Augmented Generation)技术是一种结合了信息检索(Retrieval)和生成式模型(Generation)的人工智能方法。对于用户的Query&#xff…

字节、快手、Vidu“打野”升级,AI视频小步快跑

文|白 鸽 编|王一粟 继9月份版本更新之后,光锥智能从生数科技联合创始人兼CEO唐家渝朋友圈获悉,Vidu大模型将于本周再次进行版本升级,Vidu-1.5版本即将上线。 此版本更新方向仍是重点延伸大模型的泛化能力和主体…

matlab建模入门指导

本文以水池中鸡蛋温度随时间的变化为切入点,对其进行数学建模并进行MATLAB求解,以更为通俗地进行数学建模问题入门指导。 一、问题简述 一个煮熟的鸡蛋有98摄氏度,将它放在18摄氏度的水池中,五分钟后鸡蛋的温度为38摄氏度&#x…

React Query在现代前端开发中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 React Query在现代前端开发中的应用 React Query在现代前端开发中的应用 React Query在现代前端开发中的应用 引言 React Query …

汇总常用的114款AI视频创作工具,堪称运营神器,收藏备用!

随着AI工具的使用起来起广泛,国内各个互联网大厂都开始在圈内出围。过去我们写文案、做视频、拍视频、剪辑视频、画漫画、处理图片等,都需要手工一点一点地精雕细琢。现在通过AI工具,零基础也能做出很多精致的作品。 前面我在上个月的28号分…

在vue中,完成@wangeditor/editor组件的大数据量加载,解决卡顿

背景 简单说一下需求,一个页面中只存在一个Editor组件,但是需要通过选择不同类型展示不同的content的数据,不过直接通过提供的Editor组件加载的时候,在数据量大(测试数据226KB)的情况下, 切换类…

通义千问API调用测试 (colab-python,vue)

文章目录 代码(来自官网)colab中用python测试Qwen2.5在官网上查看并确定过期时间这里看到我的免费额度到25年5月在同一个页面,点击API示例 前端调用直接在前端调用的优缺点以vue为例(代码是基于官网node.js的代码转换而来&#xf…

使用 Elasticsearch 构建食谱搜索(一)

作者:来自 Elastic Andre Luiz 了解如何使用 Elasticsearch 构建基于语义搜索的食谱搜索。 简介 许多电子商务网站都希望增强其食谱搜索体验。正确使用语义搜索可以让客户根据更自然的查询(例如 “something for Valentines Day - 情人节的礼物” 或 “…

微服务各组件整合

nacos 第一步&#xff0c;引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId></dependency> 第二步&#xff0c;增加配置 spring:application:name: …

【大数据学习 | HBASE高级】hive操作hbase

一般在查询hbase的数据的时候我们可以直接使用hbase的命令行或者是api进行查询就行了&#xff0c;但是在日常的计算过程中我们一般都不是为了查询&#xff0c;都是在查询的基础上进行二次计算&#xff0c;所以使用hbase的命令是没有办法进行数据计算的&#xff0c;并且对于hbas…

modbus协议 Mthings模拟器使用

进制转换 HEX 16进制 (0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F表示0-15) dec 10进制 n(16进制) -> 10 abcd.efg(n) d*n^0 c*n^1 b*n^2 a*n^3 e*n^-1 f*n^-2 g*n^-3&#xff08;10&#xff09; 10 -> n(16进制) Modbus基础概念 高位为NUM_H&…

列表(list)

一、前言 本次博客主要讲解 list 容器的基本操作、常用接口做一个系统的整理&#xff0c;结合具体案例熟悉自定义内部排序方法的使用。如有任何错误&#xff0c;欢迎在评论区指出&#xff0c;我会积极改正。 二、什么是list list是C的一个序列容器&#xff0c;插入和删除元素…

Sam Altman:年底将有重磅更新,但不是GPT-5!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;专注于分享AI全维度知识&#xff0c;包括但不限于AI科普&#xff0c;AI工…

zabbix监控端界面时间与服务器时间不对应

1. 修改系统时间 # tzselect Please select a continent, ocean, "coord", or "TZ".1) Africa2) Americas3) Antarctica4) Asia5) Atlantic Ocean6) Australia7) Europe8) Indian Ocean9) Pacific Ocean 10) coord - I want to use geographical coordina…

大数据新视界 -- 大数据大厂之 Impala 性能提升:高级执行计划优化实战案例(下)(18/30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

P2356 弹珠游戏

铁子们好呀&#xff0c;博主好久没更新了&#xff0c;今天给大家更新一道编程题&#xff01;&#xff01;&#xff01; 题目链接如下&#xff1a;P2356 弹珠游戏 好&#xff0c;接下来&#xff0c;我将从三个方面讲解这道例题。分别是 题目解析算法原理代码实现 文章目录 1.题…

项目管理十大知识领域:如何提升项目执行力

项目管理是一门复杂的学科&#xff0c;涉及到多个领域的知识与技能。有效的项目管理不仅能够确保项目按时、按质、按预算完成&#xff0c;还能提升团队协作、提高效率&#xff0c;甚至在面对风险和变化时保持项目的稳定性和成功率。项目管理十大知识领域是构建成功项目的基石&a…

【miniMax开放平台-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

HBuilder使用虚拟机

按文档的连接一直不成功 没找到Simulator&#xff0c;原来是因为我电脑之前没安装过虚拟机版本 安装模拟器Simulator | uni-app官网 找到settings,左下角安装需要的对应版本的虚拟机就好了&#xff0c;然后重启hb

vcenter service基本异常处理

服务&#xff1a;vcenter service 版本&#xff1a; 7.0.3 问题描述&#xff1a;无法访问vcenter ui 排障思路&#xff1a; 1. 登入vcenter所在服务器执行基础排查&#xff1a;内存、cpu、磁盘、网络等&#xff0c;发现磁盘日志目录已经爆满&#xff0c;删除180天前的日志恢…