什么是RAG? LangChain的RAG实践!

news2024/11/13 20:41:08

1. 什么是RAG

RAG的概念最先在2020年由Facebook的研究人员在论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出来。在这篇论文中他们提出了两种记忆类型:

  • 基于预训练模型(当时LLM的概念不像现在这么如日中天,但LLM也可以被归类为预训练模型)的参数型记忆;
  • 基于向量的非参数型记忆。

RAG技术将这两种记忆类型进行了整合,最终,在知识密集型的NLP任务上,比如QA,比单独使用上述两种类型的记忆获得了更好的效果。接下来将具体介绍RAG如何来补充LLM的一些短板,以及在两种记忆的具体体现,并使用LangChain来实现基本RAG流程。

2. LLM面临的挑战和RAG带来的好处

目前来看,LLM是几乎是解决各个任务的最佳解决方案。在通用聊天这一领域,很多大模型都能够实现接近人类的水平表现。但它的表现也不是完美,也存在着诸多不足:

  • 在没有答案的情况下提供虚假的信息(幻觉);
  • 在专业领域表现不足,无法给出回答,这和大模型使用的训练数据息息相关,很多领域的数据是相对粉封闭的;
  • 对于同样的问题可能会产生不同的回答,这在对问题答案稳定性要求高的领域是不能接受的;
  • 无法感知不断变化的知识。

可以把大模型比做一个刚毕业找到工作的大学生,他具备了很多通识性的知识,但对组织内部的专业知识知之甚少,因此需要尽快掌握组织内部的领域知识,可以让资深员工手把手的传输知识,也可以通过阅读组织内的文档吸收知识。与此类似,RAG通过问题匹配知识,并将知识带给大模型,再利用大模型出色的生成能力来回答问题,这样大模型这个“新人”就能变得专业,也能感知到不断变化的外部信息。

3. LangChain的RAG实践

在本节,我们将重点利用LangChain框架来进行RAG实践

3.1 RAG架构

典型的RAG架构与搜索引擎的架构类型,分为离线和在线部分,其中离线部分是对数据进行索引,这里的索引和传统的搜索引擎的倒排索引不同,这里的索引是对数据的向量化,如图(来自LangChain官网)

image.png

从图中我们可以清晰的看到,在离线索引阶段,总共有4个主要的步骤:

  1. 加载内容,非结构化数据通常需要提取内容,比如从word文档、pdf文档中提取文本内容;
  2. 内容分块,将提取的内容进一步切分为小块(chunk),这样在匹配问题时可以将上下文缩减到很小;
  3. 对于每个分块的内容获取其向量(embedding),这个获取向量的过程可以借助大模型本身的能力来实现,例如,gpt就提供了embedding的接口;
  4. 存储向量,将获取的向量通过向量数据库存储起来,方便查询。

这里最终存储的结果就是论文中提出的基于向量的非参数化的记忆。 接下来我们再来看在线(检索和生成)的部分,如图(来自LangChain官网)

image.png

在Question到大模型这条链路中,增加了Retrieve这个步骤。用户的问题被embedding后,会在向量库中匹配出最佳的内容,并和用户的问题一起,构成Prompt交给大模型,大模型根据这个Prompt再生成对应的答案返回给用户。除了第二节中提到的RAG带来的好处,这里还有一个工程层面的优势,通过Retrieve找到与问题最相关的知识,从而减少了上下文,压缩了Prompt的token数量。

上面两部分构成了RAG的基本架构,下面我们将使用LangChain来完整的实现一个RAG原型。

3.2 基于LangChain的RAG实现

为了方便我们对比效果,我们首先先实现一个直接将问题抛给大模型的流程,代码如下:

ini
复制代码
from langchain_community.llms import LlamaCpp
# 加载本地模型文件地址,使用mixtral-8*7B的大模型
model_home = "~/models/mixtral-8x7b-instruct-v0.1.Q8_0.gguf"
# 使用llm_model作为加载框架
llm_model = LlamaCpp(model_path=model_home)
prompt = "孙悟空几打白骨精?"
print(llm_model.invoke(prompt))

这里,我使用的是本地的大模型mixtral-8X7B-instruct 8位量化的版本,通过LlamaCpp框架进行加载。模型输出的答案为

erlang
复制代码
孙悟空与白骨精的第一次较量是在《西游记》第六回中发生的,这是在孙悟空带着猪八戒、沙和尚前来拜访时,白骨精就偷偷地上前来欺诈孙悟空和他的同伴们。当时,白骨精就利用孙悟空和他的同伴们对于自己还不知道的身份感到的好奇心进行了诱饵计 stratagem.

当时,孙悟空和他的同伴们都没有想到白骨精会是一个女妖的存在,所以他们都被白骨精诱饵计 seduction stratagem给骗了过来,而在此期间,孙悟空和他的同伴们都没有意识到到底是谁在利用他们的

可以看到,模型给出的答案,并不尽如人意。首先,“三打白骨精”这个故事并不是在原文第六回发生的,其次,给的答案并没有准确的回复“几打”这个问题。 即便是ChatGPT 3.5 也无法回答这样的问题。

image.png

我们尝试用RAG来解决这个问题。基于RAG的流程和架构,我们除了依赖大模型,还需要依赖一个用于向量存储和查询的引擎,为了方便,直接follow官方的样例,使用Chroma。

对于非参数化记忆,我先后选择了目录、《三打白骨精》这章内容和《三打白骨精》概要。

下面的代码实现了RAG的离线过程:

ini
复制代码
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.embeddings import LlamaCppEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma

# 使用DirectoryLoader 加载文件,作为外部知识
loader = DirectoryLoader('/Users/trent/dev/data/rag', glob="**/*.txt")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
embeddings = LlamaCppEmbeddings(model_path=model_home)
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)

下面的代码实现了RAG的在线过程:

python
复制代码
import os
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

# 可以在LangSimth生成一个API key用于整个RAG链路的追踪
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "langSimth_api_key"

# 将向量存储作为retriever
retriever = vectorstore.as_retriever()
# 从[LangSmith Hub](https://smith.langchain.com/hub)拉取promt的模版
prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm_model
    | StrOutputParser()
)

我们以RAG的形式再次进行提问:

arduino
复制代码
rag_chain.invoke("孙悟空几打白骨精?")

非参数化记忆的不同,得到的答案也不尽相同,对于这个问题,概要作为非参数化记忆,得到的答案最为准确。 下面是LangSmith中对利用三个外部文件进行试验的结果。

截屏2024-04-05 22.37.54.png

这里要推荐一下LangSmith这个可观测性组件,可以清晰的追踪到RAG的流程,以下图为例,既可以看到一次Q&A的全过程,又可以观测到Retriever的输入输出。

截屏2024-04-05 22.42.14.png

以上就是用LangChain实现的一个简单RAG流程。

Retriever这个组件的引入可以有效的增强LLM的能力,但也会带来新的挑战:

  1. 外部的知识如何选择,不同的外部知识会带来不一样的效果表现,这就要具体问题具体分析了;
  2. 外部的知识如何进行处理,chunk如何切分,chunk size如何设置等等;
  3. 提问的模板如何设置,好的提问模板可以充分利用LLM的能力,从工程上来讲,Context的长度也需要尽可能的精简。

这些问题,需要在具体的场景中进行具体的分析,同时也需要有合适的机制通过不断的反馈来积累最佳实践。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239647.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 进阶函数教程

Python 进阶函数教程 引言 在 Python 编程中,函数是组织代码、提高可重用性和可读性的关键组成部分。尽管许多初学者掌握了基本的函数定义和调用,但 Python 还提供了许多高级功能,使函数更加灵活和强大。本文将深入探讨 Python 中的高级函数…

ReactPress:深入解析技术方案设计与源码

ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,欢迎一起共建,感谢Star。 ReactPress是一个基于React框架开发的开源发布平台,它不仅仅是一个简单的博客系统,更是一个功能全…

c++实现B树(下)

书接上回小吉讲的是B树的搭建和新增方法的实现(blog传送门🚪:B树实现上)(如果有小可爱对B树还不是很了解的话,可以先看完上一篇blog,再来看小吉的这篇blog)。那这一篇主要讲的是B树中…

【漏洞分析】Fastjson最新版本RCE漏洞

01漏洞编号 CVE-2022-25845CNVD-2022-40233CNNVD-202206-1037二、Fastjson知多少 万恶之源AutoType Fastjson的主要功能是将Java Bean序列化为JSON字符串,这样得到的字符串就可以通过数据库等方式进行持久化了。 但是,Fastjson在序列化及反序列化的过…

PSRAM,Flash,SRAM,ROM有什么区别

PSRAM、Flash、SRAM 和 ROM 是四种不同类型的存储器,它们在计算机和嵌入式系统中的用途、特性和工作方式各不相同。下面是这四种存储器的区别和各自的特点: ### 1. **SRAM(静态随机存取存储器)** - **特性**: - **易…

大数据学习13之Scala基础语法(重点)

1. 简介 Scala 是 Scalable Language 的简写,是一门多范式的编程语言。创始人为 Martin Odersky 马丁奥德斯基。 Scala 这个名字来源于 Scalable Language(可伸缩的语言),它是一门基于 JVM 的多范式编程语言,通俗的说:…

django入门【05】模型介绍——字段选项(二)

文章目录 1、null 和 blank示例说明⭐ null 和 blank 结合使用的几种情况总结: 2、choices**choices 在 Django 中有以下几种形式:**(1) **简单的列表或元组形式**(2) **字典映射形式**(3&#…

微信小程序:vant组件库安装步骤

前言:在微信小程序中引用vant组件报错,提示路径不存在,这很有可能是因为没有安装构建vant组件库导致。下面是我整理的安装vant组件库的步骤: 第一步:安装node.js(执行完第一步请重启小程序) 具体步骤请看链接:node.js…

Python如何根据给定模型计算权值

目录 一、特征权重的重要性 二、线性回归中的特征权重计算 1. 导入必要的库 2. 创建示例数据集 3. 分割数据集 4. 训练线性回归模型并计算权重 三、特征选择方法 四、实际案例:金融科技数据集 五、总结 在机器学习中,特征权重的计算是理解模型如…

过去几年电子学习的趋势

近年来,在技术和不断变化的学习者期望的推动下,电子学习已经发展成为一种适应性强、沉浸式和社会化的教育形式。个性化已成为最具影响力的趋势之一,Coursera和LinkedIn Learning等平台为个人量身定制内容。这些平台使用人工智能来建议课程、跟…

面相小白的php反序列化漏洞原理剖析

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文整理反序列化漏洞的一些成因原理 建议学习反序列化之前 先对php基础语法与面向对象有个大体的了解 (我觉得我整理的比较细致,了解这俩是个啥就行) 漏洞实战情况 这个漏洞黑盒几乎不会被发现&am…

Flutter中的Material Theme完全指南:从入门到实战

Flutter作为一款热门的跨平台开发框架,其UI组件库Material Design深受开发者喜爱。本文将深入探讨Flutter Material Theme的使用,包括如何借助Material Theme Builder创建符合产品需求的主题风格。通过多个场景和代码实例,让你轻松掌握这一工…

IDC机房服务器托管的费用组成

IDC机房服务器托管的费用,并不是只有我们所想的电费而已,还有一些其它费用组成,详细来看: 1. 机位费用:   - 机位费用是根据服务器的尺寸和占用的空间来计算的。服务器通常按照U(Unit)的高度来…

032集——圆转多段线(Circle to Polyline)(CAD—C#二次开发入门)

CAD中圆可转为带有凸度的多段线以方便后期数据计算、处理&#xff0c;效果如下&#xff1a; 白色为圆&#xff0c;红色为转换后的多段线&#xff08;为区分&#xff0c;已手工偏移多段线&#xff09; public static void XX(){var curves Z.db.SelectEntities<Entity>…

Nginx更换ssl证书不生效

一.场景 在用的ssl证书要过期了&#xff0c;申请了新的ssl证书下来&#xff0c;在nginx配置上更换上去后&#xff0c;打开系统地址&#xff0c;一依然是使用原来的旧证书&#xff0c;以前有更换过别的域名证书&#xff0c;重启nginx服务后立马就生效了。 这次没生效&#xff…

华为eNSP:MSTP

一、什么是MSTP&#xff1f; 1、MSTP是IEEE 802.1S中定义的生成树协议&#xff0c;MSTP兼容STP和RSTP&#xff0c;既可以快速收敛&#xff0c;也提供了数据转发的多个冗余路径&#xff0c;在数据转发过程中实现VLAN数据的负载均衡。 2、MSTP可以将一个或多个VLAN映射到一个Inst…

Jmeter中的配置原件(二)

5--HTTP请求默认值 用途 设置默认值&#xff1a;为多个HTTP请求设置通用的默认值&#xff0c;如服务器地址、端口号、协议等。简化配置&#xff1a;避免在每个HTTP请求中重复配置相同的参数。 配置步骤 添加HTTP请求管理器 右键点击线程组&#xff08;Thread Group&#xff…

SpringBoot(二十一)SpringBoot自定义CURL请求类

在测试SpringAi的时候,发现springAI比较人性化的地方,他为开发者提供了多种请求方式,如下图所示: 上边的三种方式里边,我还是喜欢CURL,巧了,我还没在Springboot框架中使用过CURL呢。正好封装一个CURL工具类。 我这里使用httpclient来实现CURL请求。 一:添加依赖 不需要…

空空想色?李子柒 想念你们!——早读(逆天打工人爬取热门微信文章解读)

空空想色 引言Python 代码第一篇 李子柒 想念你们&#xff01;第二篇 什么叫个性命双休结尾 引言 又开始新的尝试 最近看了坛经 所以现在佛性满满 看到很多sese的图 现在基本不会有什么想法了 以前看不懂呀 现在是借着王德峰的讲解勉强看懂 后面也会越来越懂 总之就是 空空 …

高频旁路电容选型注意事项

1. 前置频率倍减器 图1是用于1.9GHz频带的PLL信号发生器使用的前置频率倍减器的电路图。在这种高频率中&#xff0c;普通PLL用可编程序计数器不工作&#xff0c;而是把ECL等前置频率倍减器连接在前段后分频。 这种例子的分频比为1/256。例如&#xff1a;1.920GHz的输入信号分…