Spark的Shuffle过程

news2024/11/13 12:36:48

一、Shuffle 的作用是什么?

    Shuffle 操作可以理解为将集群中各个节点上的数据进行重新整理和分类的过程。这一概念源自 Hadoop 的 MapReduce 模型,Shuffle 是连接 Map 阶段和 Reduce 阶段的关键环节。在分布式计算中,每个计算节点通常只处理任务的一部分数据。如果下一个阶段需要依赖前一个阶段的所有计算结果,就需要对这些结果进行重新整合和分类,这就是 Shuffle 的主要任务。在 Spark 中,RDD 之间的依赖关系分为窄依赖和宽依赖,其中宽依赖涉及 Shuffle 操作。因此,在 Spark 程序中,每个 job 的阶段(stage)划分依据就是是否存在 Shuffle 操作,每个 stage 包含一系列的 RDD map 操作。

二、为什么 Shuffle 操作耗时?

    Shuffle 操作需要对数据进行重新聚合和划分,并将这些数据分配到集群的各个节点上进行下一步的处理。这一过程中,不同节点之间需要进行大量的数据交换。由于数据传输需要通过网络,并且通常需要先将数据写入磁盘,因此每个节点都会进行大量的文件读写操作。这些读写操作不仅增加了 I/O 开销,还可能导致网络拥塞,从而使 Shuffle 操作变得非常耗时,相比之下,简单的 map 操作则要快得多。

三、Spark 当前的ShuffleManager模式及处理机制

  在 Spark 程序中,Shuffle 操作由 ShuffleManager 对象进行管理。目前,Spark 支持两种主要的 ShuffleManager 模式:HashShuffleManager 和 SortShuffleManager。Shuffle 操作包括当前阶段的 Shuffle Write(写入磁盘)和下一阶段的 Shuffle Read(读取),这两种模式的主要区别在于 Shuffle Write 阶段的处理方式。

3.1、HashShuffleManager

HashShuffleManager 是 Spark 最初使用的 ShuffleManager 模式。在这种模式下,每个任务(task)会为每个分区(partition)创建一个临时文件,并将数据直接写入对应的文件中。这种方式简单直观,但在处理大量分区时会产生大量的小文件,导致磁盘 I/O 开销增加。此外,每个任务都需要为每个分区打开和关闭文件,这也会增加文件句柄的开销。

3.2、SortShuffleManager

SortShuffleManager 是目前 Spark 默认使用的 ShuffleManager 模式。在这种模式下,任务会先对数据进行排序,然后将排序后的数据写入一个或几个大文件中。这种方式减少了文件的数量,提高了磁盘 I/O 效率。此外,SortShuffleManager 还支持数据的内存缓存,只有在内存不足时才会将数据溢写到磁盘,从而进一步提高了性能。

四、Spark 程序的 Shuffle 调优

Shuffle 阶段需要将数据写入磁盘,这涉及到大量的读写文件操作和文件传输操作,对节点的系统 I/O 有较大的影响。通过调整一些关键参数,可以减少 Shuffle 阶段的文件数量和 I/O 读写次数,从而提高性能。以下是几个主要的调优参数:

1、spark.shuffle.manager:设置 Spark 任务的 ShuffleManager 模式。对于 Spark 1.2 以上版本,默认值为 sort,即在 Shuffle Write 阶段会对数据进行排序,每个 executor 上生成的文件会合并成两个文件(一个数据文件和一个索引文件)。通常情况下,默认的 sort 模式已经能够提供较好的性能,除非有特殊情况,一般不需要更改此参数。

2、spark.shuffle.sort.bypassMergeThreshold:设置启用 bypass 机制的阈值。如果 Shuffle Read 阶段的 task 数量小于或等于该值,则 Shuffle Write 阶段会启用 bypass 机制。默认值为 200。如果 Shuffle Read 阶段的 task 数量较少,可以适当降低这个阈值,以启用 bypass 机制,减少文件合并操作,提高性能。

3、spark.shuffle.file.buffer:设置 Shuffle Write 阶段写文件时缓冲区的大小。默认值为 32MB。如果内存资源充足,可以将该值调大(例如 64MB),以减少 executor 的 I/O 读写次数,提高写入速度。

4、spark.shuffle.io.maxRetries:设置 Shuffle Read 阶段 fetch 数据时的最大重试次数。默认值为 3 次。如果 Shuffle 阶段的数据量很大,网络环境不稳定,可以适当增加重试次数,以提高数据传输的成功率。

除了上述参数外,还有一些其他常用的 Shuffle 调优参数,可以帮助进一步优化性能:

1、spark.shuffle.compress:是否启用 Shuffle 数据的压缩。默认值为 true。启用压缩可以减少网络传输的数据量,但会增加 CPU 负载。如果网络带宽是瓶颈,建议开启压缩;如果 CPU 是瓶颈,可以考虑关闭压缩。

2、spark.shuffle.spill:是否启用 Shuffle 数据的溢写(spill)。默认值为 true。启用溢写可以防止内存不足导致的任务失败,但会增加磁盘 I/O 开销。如果内存资源充足,可以考虑关闭溢写以提高性能。

3、spark.shuffle.spill.compress:是否启用 Shuffle 溢写数据的压缩。默认值为 true。启用压缩可以减少磁盘 I/O 开销,但会增加 CPU 负载。如果磁盘 I/O 是瓶颈,建议开启压缩;如果 CPU 是瓶颈,可以考虑关闭压缩。

4、spark.shuffle.memoryFraction:分配给 Shuffle 操作的内存比例。默认值为 0.66。根据实际内存情况调整该值,以平衡 Shuffle 操作和其他操作的内存需求。

5、spark.shuffle.manager.numPartitions:设置 Shuffle 操作的分区数。默认值根据数据量自动确定。合理设置分区数,避免过多或过少的分区。过多的分区会导致更多的网络通信,过少的分区可能导致数据倾斜。

通过调整这些参数,可以显著改善 Shuffle 阶段的性能,从而提升整个 Spark 应用的效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2237574.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

推荐一款功能强大的视频修复软件:Apeaksoft Video Fixer

Apeaksoft Video Fixer是一款功能强大的视频修复软件,专门用于修复损坏、不可播放、卡顿、画面失真、黑屏等视频问题。只需提供一个准确且有效的样本视频作为参考,该软件就能将受损视频修复到与样本视频相同的质量。该软件目前支持MP4、MOV、3GP等格式的…

Web前端开发--HTML语言

文章目录 前言1.介绍2.组成3.基本框架4.常见标签4.1双标签4.1.1.标题标签4.2.2段落标签4.1.3文本格式化标签4.1.4超链接标签4.1.5视频标签4.1.6 音频标签 4.2单标签4.2.1换行标签和水平线标签4.2.2 图像标签 5.表单控件结语 前言 生活中处处都有网站,无论你是学习爬…

[ DOS 命令基础 2 ] DOS 命令详解-网络相关命令

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

gitlab无法创建合并请求是所有分支都不显示

点击Merge Requests ------> New merge request 创建新的合并请求时,在Source branch和Target branch中一个分支都不显示 排查思路: 1.怀疑是权限问题。 发现只有我的一个账号出现,检查了账号的权限,尝试了master、develop角色…

【温度表达转化】

【温度表达转化】 C语言代码C代码Java代码Python代码 💐The Begin💐点点关注,收藏不迷路💐 利用公式 C5∗(F−32)/9 (其中C表示摄氏温度,F表示华氏温度) 进行计算转化。 输出 输出一行&#x…

「QT」几何数据类 之 QPoint 整型点类

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…

[Linux]:高级IO

1. IO 理解 1.1 IO 的基本概念 I/O即输入/输出(input/output),是计算机系统中极为关键的操作环节。 在经典的冯诺依曼体系结构框架下,其核心在于数据的传输流向界定了输入与输出的概念。具体而言,当把数据从诸如键盘…

【GeoJSON在线编辑平台】(2)吸附+删除+挖孔+扩展

前言 在上一篇的基础上继续开发,补充上吸附功能、删除矢量、挖孔功能。 实现 1. 吸附 参考官方案例:Snap Interaction 2. 删除 通过 removeFeature 直接移除选中的要素。 3. 挖孔 首先是引入 Turf.js ,然后通过 mask 方法来实现挖孔的…

【ReactPress】React + antd + NestJS + NextJS + MySQL 的简洁兼时尚的博客网站

ReactPress 是使用React开发的开源发布平台,用户可以在支持React和MySQL数据库的服务器上架设属于自己的博客、网站。也可以把 ReactPress 当作一个内容管理系统(CMS)来使用。 前言 此项目是用于构建博客网站的,包含前台展示、管理…

ZISUOJ 2024算法基础公选课练习一(1)

前言、 又是一年算法公选课&#xff0c;与去年不同的是今年学了一些纯C&#xff08;而不是带类的C&#xff09; 一、我的C模板 1.1 模板1 #include <bits/stdc.h> using i64 long long;int main() {std::cin.tie(nullptr)->sync_with_stdio(false);return 0; } 1…

【1】虚拟机安装

1.安装VMware WorkStation Pro VMware下载地址&#xff1a; 密钥&#xff1a;YF390-0HF8P-M81RQ-2DXQE-M2UT6 2.新建虚拟机 centos7下载地址&#xff1a;centos-7.9.2009-isos-x86_64安装包下载_开源镜像站-阿里云

【SpringBoot】SpringBoot自带的Jackson入门使用

导入依赖 springboot自带的&#xff0c;挨个点进去&#xff0c;就能找到 自定义对象转换器 import com.fasterxml.jackson.databind.DeserializationFeature; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.module.SimpleModu…

软件工程概论项目(一),git环境的配置和平台代码的拉取

距离软工概论项目答辩还有五个周的时间&#xff0c;需要做一个项目&#xff0c;把心得体会都做一个记录。以便以后进行回顾和反思 这里写目录标题 一、环境的配置gitbash 一、环境的配置 gitbash 安装gitbash&#xff0c;简单说两句&#xff0c;git用于多人协作和代码托管&am…

分布式数据库中间件mycat

MyCat MyCat是一个开源的分布式数据库系统&#xff0c;它实现了MySQL协议&#xff0c;可以作为数据库代理使用。 MyCat(中间件)的核心功能是分库分表&#xff0c;即将一个大表水平分割为多个小表&#xff0c;存储在后端的MySQL服务器或其他数据库中。 它不仅支持MySQL&#xff…

万字长文解读深度学习——循环神经网络RNN、LSTM、GRU、Bi-RNN

&#x1f33a;历史文章列表&#x1f33a; 深度学习——优化算法、激活函数、归一化、正则化深度学习——权重初始化、评估指标、梯度消失和梯度爆炸深度学习——前向传播与反向传播、神经网络&#xff08;前馈神经网络与反馈神经网络&#xff09;、常见算法概要汇总万字长文解读…

一文了解什么是腾讯云开发

关于云开发的猜想 说到云开发&#xff0c;作为开发者的大家是否大概就有了想法。比如说过去的开发工作都是在自己本地电脑的开发工具&#xff0c;比如IDEA开发工具进行开发的&#xff0c;开发完成后再部署到服务器测试以及上线。那么腾讯云开发&#xff0c;是不是就是不用本地…

双指针算法的妙用:提高代码效率的秘密(2)

双指针算法的妙用&#xff1a;提高代码效率的秘密&#xff08;2&#xff09; 前言&#xff1a; 小编在前几日讲述了有关双指针算法两道题目的讲解&#xff0c;今天小编继续进行有关双指针算法习题的讲解&#xff0c;老规矩&#xff0c;今天还是两道题目的讲解&#xff0c;希望…

【Python】从入门开始抓取你想要的电影,一周可掌握基础,附完整源码

Python学习很简单&#xff0c;只是你走进了误区。 为什么你一定要先掌握枯燥的基础点后&#xff0c;再去做实际操作呢&#xff1f; 其实&#xff0c;你根本坚持不了那么长时间&#xff0c;但实际上你可以直接去做python项目。 不信&#xff1f;看看我做这个项目的思路&#x…

逐梦代码深林:Linux编译之舞,链接之诗——自举、动静态库的浪漫旅程

文章目录 问题引入&#xff0c;为什么要进行编译->汇编?一、详细解释编译器自举1. 从最初的二进制编程到汇编2. 第一代汇编编译器的诞生3. 编译器自举的出现&#xff1a;从汇编到更高级的编译器4. 自举的延续&#xff1a;从汇编到高级编程语言5. 为什么要进行编译器自举&am…

AI 写作(六):核心技术与多元应用(6/10)

一、AI 写作的核心技术概述 AI 写作在当今数字化时代正发挥着越来越重要的作用。它不仅极大地提高了写作效率&#xff0c;还为不同领域带来了创新的可能性。 AI 写作的核心技术主要包括基于模板的文本生成和基于深度学习的文本生成。基于模板的文本生成通常依赖预先设定的模板…