基于卷积神经网络的农作物病虫害识别系统(pytorch框架,python源码)

news2024/11/12 20:49:42

   更多图像分类、图像识别、目标检测等项目可从主页查看

功能演示:

基于卷积神经网络的农作物病虫害检测(pytorch框架)_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的农作物病虫害识别系统是在pytorch框架下实现的,系统中有两个模型可选resnet50模型和VGG16模型,这两个模型可用于模型效果对比,增加工作量。

该系统涉及的技术栈有,UI界面:python + pyqt5,前端界面:python + flask  

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:


超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍

1. 项目结构

2. 数据集 

部分数据展示: 

3.GUI界面(技术栈:pyqt5+python) 

 

4.前端界面(技术栈:python+flask)

 

5. 核心代码 
class MainProcess:
    def __init__(self, train_path, test_path, model_name):
        self.train_path = train_path
        self.test_path = test_path
        self.model_name = model_name
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
        def main(self, epochs):
        # 记录训练过程
        log_file_name = './results/vgg16训练和验证过程.txt'
        # 记录正常的 print 信息
        sys.stdout = Logger(log_file_name)
 
        print("using {} device.".format(self.device))
        # 开始训练,记录开始时间
        begin_time = time()
        # 加载数据
        train_loader, validate_loader, class_names, train_num, val_num = self.data_load()
        print("class_names: ", class_names)
        train_steps = len(train_loader)
        val_steps = len(validate_loader)
        # 加载模型
        model = self.model_load()  # 创建模型
 
        # 网络结构可视化
        x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入
        model_visual_path = 'results/vgg16_visual.onnx'  # 模型结构保存路径
        torch.onnx.export(model, x, model_visual_path)  # 将 pytorch 模型以 onnx 格式导出并保存
        # netron.start(model_visual_path)  # 浏览器会自动打开网络结构
 
        # load pretrain weights
        # download url: https://download.pytorch.org/models/vgg16-397923af.pth
        model_weight_path = "models/vgg16-pre.pth"
        assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
        model.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
 
        # 更改Vgg16模型的最后一层
        model.classifier[-1] = nn.Linear(4096, len(class_names), bias=True)
 
        # 将模型放入GPU中
        model.to(self.device)
        # 定义损失函数
        loss_function = nn.CrossEntropyLoss()
        # 定义优化器
        params = [p for p in model.parameters() if p.requires_grad]
        optimizer = optim.Adam(params=params, lr=0.0001)
 
        train_loss_history, train_acc_history = [], []
        test_loss_history, test_acc_history = [], []
        best_acc = 0.0
 
        for epoch in range(0, epochs):
            # 下面是模型训练
            model.train()
            running_loss = 0.0
            train_acc = 0.0
            train_bar = tqdm(train_loader, file=sys.stdout)
            # 进来一个batch的数据,计算一次梯度,更新一次网络
            for step, data in enumerate(train_bar):
                images, labels = data  # 获取图像及对应的真实标签
                optimizer.zero_grad()  # 清空过往梯度
                outputs = model(images.to(self.device))  # 得到预测的标签
                train_loss = loss_function(outputs, labels.to(self.device))  # 计算损失
                train_loss.backward()  # 反向传播,计算当前梯度
                optimizer.step()  # 根据梯度更新网络参数
 
                # print statistics
                running_loss += train_loss.item()
                predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引
                # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()
                train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                         epochs,
                                                                         train_loss)
            # 下面是模型验证
            model.eval()  # 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化
            val_acc = 0.0  # accumulate accurate number / epoch
            testing_loss = 0.0
            with torch.no_grad():  # 张量的计算过程中无需计算梯度
                val_bar = tqdm(validate_loader, file=sys.stdout)
                for val_data in val_bar:
                    val_images, val_labels = val_data
                    outputs = model(val_images.to(self.device))
 
                    val_loss = loss_function(outputs, val_labels.to(self.device))  # 计算损失
                    testing_loss += val_loss.item()
 
                    predict_y = torch.max(outputs, dim=1)[1]  # 每行最大值的索引
                    # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                    val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()
 
            train_loss = running_loss / train_steps
            train_accurate = train_acc / train_num
            test_loss = testing_loss / val_steps
            val_accurate = val_acc / val_num
 
            train_loss_history.append(train_loss)
            train_acc_history.append(train_accurate)
            test_loss_history.append(test_loss)
            test_acc_history.append(val_accurate)
 
            print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
                  (epoch + 1, train_loss, val_accurate))
            if val_accurate > best_acc:
                best_acc = val_accurate
                torch.save(model.state_dict(), self.model_name)
 
        # 记录结束时间
        end_time = time()
        run_time = end_time - begin_time
        print('该循环程序运行时间:', run_time, "s")
        # 绘制模型训练过程图
        self.show_loss_acc(train_loss_history, train_acc_history,
                           test_loss_history, test_acc_history)
        # 画热力图
        self.heatmaps(model, validate_loader, class_names)

该系统可以训练自己的数据集,训练过程也比较简单,只需指定自己数据集中训练集和测试集的路径,训练后模型名称和指定训练的轮数即可 

训练结束后可输出以下结果:
a. 训练过程的损失曲线

 b. 模型训练过程记录,模型每一轮训练的损失和精度数值记录

c. 模型结构

模型评估可输出:
a. 混淆矩阵

b. 测试过程和精度数值

 c. 准确率、精确率、召回率、F1值 

(三)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

整个项目包含全部资料,一步到位,省心省力

项目运行过程如出现问题,请及时交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2237001.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2-149 基于matlab的LDPC译码性能分析

基于matlab的LDPC译码性能分析,LDPC(Low-Density Parity-Check)码作为编码技术,具有优秀的纠错性能和较低的编解码复杂度。为保证可靠的数据传输,对传输过程中可能出现的信道噪声、干扰等进行模拟和分析。分析对比了误…

算法每日双题精讲——双指针(快乐数,盛最多水的容器)

🌟快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。 🌟 别再犹豫了!快来订阅我们的算法每日双题精讲专栏,一起踏上算法学习的精彩之旅吧!💪…

在Scrapy爬虫中应用Crawlera进行反爬虫策略

在互联网时代,数据成为了企业竞争的关键资源。然而,许多网站为了保护自身数据,会采取各种反爬虫技术来阻止爬虫的访问。Scrapy作为一个强大的爬虫框架,虽然能够高效地抓取网页数据,但在面对复杂的反爬虫机制时&#xf…

Linux(CentOS)安装 JDK

CentOS版本:CentOS 7 JDK版本:JDK17 1、下载 JDK 官网:https://www.oracle.com/ 2、上传 JDK 文件到 CentOS 使用FinalShell远程登录工具,并且使用 root 用户连接登录(注意这里说的root用户连接登录是指这样的&…

redis和数据库的数据一致性

在我们使用redis作为缓存的时候,数据库和缓存数据保持一致性就显得尤为重要,因为如果不做处理的话很有可能读取到的数据会出现差错,那这里怎么进行解决呢? 首先我们先来看一下操作数据到底是直接删除数据还是说通过修改的方式来修…

发布 VectorTraits v3.0(支持 X86架构的Avx512系列指令集,支持 Wasm架构及PackedSimd指令集等)

文章目录 支持 X86架构的Avx512系列指令集支持Avx512时的输出信息 支持 Wasm架构及PackedSimd指令集支持PackedSimd时的输出信息VectorTraits.Benchmarks.Wasm 使用说明 新增了向量方法支持 .NET 8.0 新增的向量方法提供交织与解交织的向量方法YGroup3Unzip的范例代码 提供重新…

工业相机常用功能之白平衡及C++代码分享

目录 1、白平衡的概念解析 2、相机白平衡参数及操作 2.1 相机白平衡参数 2.2 自动白平衡操作 2.3 手动白平衡操作流程 3、C++ 代码从XML读取参数及设置相机参数 3.1 读取XML 3.2 C++代码,从XML读取参数 3.3 给相机设置参数 1、白平衡的概念解析 白平衡(White Balance)…

推荐一款SSD硬盘优化器:Auslogics SSD Optimizer Pro

SSD Optimizer Pro 是一款专为优化固态硬盘 (SSD) 性能而设计的专业工具,旨在最大化 SSD 的效率,延长硬盘使用寿命。凭借简便的操作界面和强大的优化功能,SSD Optimizer Pro 可以让用户充分利用 SSD 的优势,从而获得更高的系统性能…

常用机器人算法原理介绍

一、引言 随着科技的不断发展,机器人技术在各个领域得到了广泛应用。机器人算法是机器人实现各种功能的核心,它决定了机器人的行为和性能。本文将介绍几种常用的机器人算法原理,包括路径规划算法、定位算法和运动控制算法。 二、路径规划算法…

基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究

摘要:本文探讨了完善适配视频号交易小程序的重要意义,重点阐述了开源 AI 智能名片 S2B2C 商城小程序在这一过程中的应用。通过分析其与直播间和社群的无缝衔接特点,以及满足新流量结构下基础设施需求的能力,为门店在视频号直播交易…

【OH】openHarmony开发环境搭建(基于windows子系统WSL)

前言 本文主要介绍基于windows子系统WSL搭建openHarmony开发环境。 WSL与Vmware虚拟机的区别,可以查看WSL与虚拟机的区别 更详细的安装配置过程可参考微软官网: ​安装 WSL 前提 以下基于windows 111专业版进行配置,windows 10应该也是可以…

WPF使用Prism框架首页界面

1. 首先确保已经下载了NuGet包MaterialDesignThemes 2.我们通过包的项目URL可以跳转到Github上查看源码 3.找到首页所在的代码位置 4.将代码复制下来&#xff0c;删除掉自己不需要的东西&#xff0c;最终如下 <materialDesign:DialogHostDialogTheme"Inherit"Ide…

AHB Matrix 四星级 验证笔记(2.4) Tt3.3AHB总线协议测试时的 并行数据

文章目录 前言一、代码二、错误1.地址范围2. 并行执行线程中变量覆盖的情况3.有关incr的beat 前言 来源路科验证本节搞定 T3.3 AHB总线协议的覆盖&#xff1a;AHB_PROTOCOL_COVER 即测试ahb slave接口和master接口支持&#xff08;尽可能&#xff09;全部的ahb协议传输场景&am…

C++builder中的人工智能(16):神经网络中的SoftPlus激活函数

现在我们继续探索一下SoftPlus激活函数在人工神经网络&#xff08;ANN&#xff09;中的应用。了解SoftPlus激活函数的工作原理&#xff0c;将有助于您在使用C IDE构建C应用程序时更加得心应手。 目录 神经网络中的激活函数是什么&#xff1f;能在C中创建激活函数吗&#xff1f…

Java的(.properties后缀)的配置文件介绍与读取(3种情况)

目录 一、&#xff08;.properties后缀&#xff09;的配置文件。 &#xff08;1&#xff09;基本介绍。 &#xff08;2&#xff09;基本语法。 1、键值对。 2、如何注释&#xff1f; 3、编码类型。 4、空白字符。 5、多行值。 &#xff08;3&#xff09;".properties后缀&…

yaml文件编写

Kubernetes 支持YAML和JSON格式管理资源 JSON 格式:主要用于 api 接口之间消息的传递 YAML 格式;用于配置和管理,YAML是一种简洁的非标记性语言,内容格式人性化容易读懂 一&#xff0c;yaml语法格式 1.1 基本语法规则 使用空格进行缩进&#xff08;不使用制表符&#xff0…

Node.js——fs模块-文件删除

1、在Node.js中&#xff0c;我们可以使用unlink或unlinkSync来删除文件。 2、语法&#xff1a; fs.unlink(path,callback) fs.unlinkSync(path) 参数说明&#xff1a; path 文件路径 callback 操作后的回调函数 本文的分享到此结束&#xff0c;欢迎大家评论区一同讨论学…

新版IJidea 如何打开数据库窗口(2024.2.4 版)(连接数据库)

新版IJidea 2024.2.4 如何打开数据库窗口&#xff1f; 方式&#xff1a;使用插件&#xff0c;Database Navigator 1.安装插件&#xff0c;步骤如下&#xff1a; 打开 Settings/Preferences 对话框&#xff08;快捷键 CtrlAltS&#xff09;。前往 Plugins 菜单项。在搜索框中…

黄仁勋:AI数据中心可扩展至百万芯片 性能年翻倍,能耗年减2-3倍

本周&#xff0c;英伟达CEO黄仁勋接受了《No Priors》节目主持人的采访&#xff0c;就英伟达的十年赌注、x.AI超级集群的快速发展、NVLink技术创新等AI相关话题进行了一场深度对话。黄仁勋表示&#xff0c;没有任何物理定律可以阻止将AI数据中心扩展到一百万个芯片&#xff0c;…

java 面向对象高级

1.final关键字 class Demo{public static void main(String[] args) {final int[] anew int[]{1,2,3};// anew int[]{4,5,6}; 报错a[0]5;//可以&#xff0c;解释了final修饰引用性变量&#xff0c;变量存储的地址不能被改变&#xff0c;但地址所指向的对象的内容可以改变} }什…