方案介绍
智慧城市中的路面垃圾识别算法通常基于深度学习框架,这些算法因其在速度和精度上的优势而被广泛采用。这些模型能够通过训练识别多种类型的垃圾,包括塑料袋、纸屑、玻璃瓶等。系统通过训练深度学习模型,使其能够识别并定位多种类型的路面垃圾。
人工智能算法的实现步骤包括环境准备、数据准备、数据集配置文件、模型训练、导出ONNX模型、性能评估和可视化评估指标。在实际应用中,系统可以支持图片、视频以及摄像头的输入,通过界面实时显示目标位置、检测结果和置信度等信息,帮助用户快速了解路面垃圾情况。
系统还具备友好的图形用户界面,使用如PyQt5或Tkinter等库创建,方便用户上传视频和查看检测结果。模型训练后可以导出为ONNX格式,便于在其他平台上部署。系统还提供训练过程的评估指标可视化,帮助用户理解模型效果,并具备可扩展性,支持更多垃圾种类的添加与检测。
产品介绍
本系统集数据看板、智能监控、设备管理、事件处理等功能于一体,支持实时监控、风险预警和多场景监测。通过样本数据标注和算法训练,提升安防识别精准度。同时,系统配置灵活,便于用户管理告警和算法模型。
本系统产品支持用户自主 迭代训练优化,用户上传数据集训练图像数据集,即可完成对新的场景或行为轨迹的识别。
案例介绍
1. 垃圾车自动监控
为该单位提供了一套完整的智慧城市垃圾检测方案。该方案通过在市政车辆上安装摄像头,对路面垃圾进行检测和分析,实现对路面遗撒垃圾的监控、记录并通知环卫人员清理。这一方案大大提升了环卫人效,减轻了清洁工人的工作负担,并用深度学习技术帮助城市保持清洁。
2. 智慧城市系统集成
该系统集成在大的智慧城市项目中,本系统包括数据准备、模型训练、评估、可视化以及图形用户界面的创建。这个系统能够有效地应用于城市垃圾管理与环境保护,通过整合深度学习与用户友好的界面,实现了高效的垃圾检测和管理。
3. 智能环卫车
该项目是智慧城市中不可或缺的一部分,旨在通过AI技术帮助环卫行业智能升级,实现设施智能化、运营管理信息化、分析决策智慧化。项目通过在环卫车辆上安装摄像头,对路面垃圾进行实时监控和分析,有效提升了环卫作业的效率和质量。
更多产品体验及相关信息,请访问思通数科官网算法商城的安全监控大模型。