一、头文件
torch.optim.Optimizer(params, defaults)
optim文档
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
二、代码
不带优化器的代码框架
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d, Conv2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class Mary(nn.Module):
def __init__(self):
super(Mary,self).__init__()
self.model1 = nn.Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self,x):
x = self.model1(x)
return x
Yorelee = Mary()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(Yorelee.parameters(),lr=0.01)
for epoch in range(20):
total_loss = 0
for data in dataloader:
img,target = data
output = Yorelee(img)
# print(output)
# print(target)
result_loss = loss(output,target)
# print(result_loss)
# print("***********************")
optim.zero_grad()
result_loss.backward()
optim.step()
total_loss += result_loss
print(total_loss)
输出:
tensor(18861.5215, grad_fn=<AddBackward0>)
tensor(16226.8633, grad_fn=<AddBackward0>)
tensor(15367.2148, grad_fn=<AddBackward0>)