数据结构与算法——Java实现 53.力扣938题——二叉搜索树的范围和

news2024/11/4 21:20:06

生命的意义

在于活出自我

而不是成为别人眼中的你

                                —— 24.11.3

938. 二叉搜索树的范围和

给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。

示例 1:

输入:root = [10,5,15,3,7,null,18], low = 7, high = 15
输出:32

示例 2:

输入:root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
输出:23

提示:

  • 树中节点数目在范围 [1, 2 * 104] 内
  • 1 <= Node.val <= 105
  • 1 <= low <= high <= 105
  • 所有 Node.val 互不相同

方法1 中序遍历判断范围

思路

由题目给出的输入序列可以看出,输入序列按照二叉树的层次遍历顺序进行排序

我们按照中序遍历(左 - 根 - 右)的顺序排列给出的节点,遍历树节点,如果树节点在此范围内,则将该节点的值加入总和中,若不在该范围内,则跳过该节点,观察下一个节点,直到遍历完所有节点为止

返回总和

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rangeSumBST(TreeNode node,int low,int high){
        TreeNode p = node;
        LinkedList<TreeNode> stack = new LinkedList<>();
        int sum = 0;
        while(p != null || !stack.isEmpty()){
            if (p != null || !stack.isEmpty()){
                if (p != null){
                    stack.push(p);
                    // 左
                    p = p.left;
                }else {
                    TreeNode pop = stack.pop();
                    // 处理值
                    if (pop.val >= low && pop.val <= high){
                        sum += pop.val;
                    }
                    // 右
                    p = pop.right;
                }
            }
        }
        return sum;
    }
}

 


方法2 中序遍历剪枝优化 

由于二叉搜索树的特性(左 < 根 < 右),当我们遍历到某一结点时发现该节点不在范围内,则其左子树/右子树可以直接进行剪枝操作

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rangeSumBST(TreeNode node,int low,int high){
        TreeNode p = node;
        LinkedList<TreeNode> stack = new LinkedList<>();
        int sum = 0;
        while(p != null || !stack.isEmpty()){
            if (p != null || !stack.isEmpty()){
                if (p != null){
                    stack.push(p);
                    // 左
                    p = p.left;
                }else {
                    TreeNode pop = stack.pop();
                    // 处理值
                    if (pop.val > high){
                        break;
                    }
                    if (pop.val >= low){
                        sum += pop.val;
                    }
                    // 右
                    p = pop.right;
                }
            }
        }
        return sum;
    }
}


方法3 上下限递归剪枝优化

思路

从根节点开始进行递归,对于每个节点进行判断,若它的val值大于要求的范围,则将其右子树跳过不用遍历判断,若其val值小于要求的范围,则将其左子树跳过不用遍历判断,如此可大大提高程序的效率 (通过范围上下限判定进行剪枝操作

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rangeSumBST(TreeNode node,int low,int high){
        if (node == null){
            return 0;
        }
        if (node.val < low){
            // 将节点的左子树省去
            return rangeSumBST(node.right,low,high);
        }
        if (node.val > high){
            // 将节点的右子树省去
            return rangeSumBST(node.left,low,high);
        }

        return node.val + rangeSumBST(node.left,low,high) + rangeSumBST(node.right,low,high);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2232090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TensorRT-LLM的k8s弹性伸缩部署方案

Scaling LLMs with NVIDIA Triton and NVIDIA TensorRT-LLM Using Kubernetes | NVIDIA Technical Blog 一共涉及4个k8s组件&#xff1a; 1. Deployment&#xff1a;跑起来N个pod&#xff1b;指定NVIDIA官方的triton&trt-llm的docker image&#xff0c;指定好model放在哪个…

高亮无惧烈日,强力巨彩租赁屏点亮户外“视”界

在户外显示领域&#xff0c;一款性能出色、适应性强、维护便捷的租赁屏无疑是众多主办方和广告商的首选。强力巨彩旗下的幻云系列租赁屏具备画面清晰、无水波纹、性能稳定、高亮度等诸多优势&#xff0c;可应用于各大户外显示场所&#xff0c;是户外租赁屏市场的明星产品。   …

批量删除redis数据【亲测可用】

文章目录 引言I redis客户端基础操作key的命名规则批量查询keyII 批量删除key使用连接工具进行分组shell脚本示例其他方法III 知识扩展:控制短信验证码获取频率引言 批量删除redis数据的应用: 例如缓存数据使用了新的key存储,需要删除废弃的key。RedisTemplate的key序列化采…

Mysql开发规范

开发规范 对象命名 命名规范的对象&#xff0c;是指数据库SCHEMA、表TABLE、字段COLUMN、索引INDEX、约束CONSTRAINTS等 【强制】凡是需要命名的对象&#xff0c;其标识符不能超过30个字符【强制】名称必须以英文字母开头&#xff0c;不得以 _(下划线) 作为起始和终止字母【…

Web应用性能测试工具 - httpstat

在数字化时代&#xff0c;网站的性能直接影响用户体验和业务成功。你是否曾经在浏览网页时&#xff0c;遇到加载缓慢的困扰&#xff1f;在这个快速变化的互联网环境中&#xff0c;如何快速诊断和优化Web应用的性能呢&#xff1f;今天&#xff0c;我们将探讨一个强大的工具——h…

(57)MATLAB使用迫零均衡器和MMSE均衡器的BPSK调制系统仿真

文章目录 前言一、仿真测试模型二、仿真代码三、仿真结果四、迫零均衡器和MMSE均衡器的实现1.均衡器的MATLAB实现2.均衡器的性能测试 总结 前言 本文给出仿真模型与MATLAB代码&#xff0c;分别使用具有ISI的三个不同传输特性的信道&#xff0c;仿真测试了使用迫零均衡器和MMSE…

用ChatGPT提升工作效率:从理论到实际应用

伴人工智能技术的迅速演进&#xff0c;像ChatGPT这类语言模型已成为提升工作效率的关键工具。这类模型不仅具备处理海量数据的能力&#xff0c;还能自动化许多日常任务&#xff0c;从而提高决策的准确性。本文将深入探讨如何在工作中利用ChatGPT等AI工具提升效率&#xff0c;涵…

MySQL FIND_IN_SET 函数详解

文章目录 1. 基本语法2. 使用场景3. 实战示例3.1 基础查询示例3.2 与其他函数结合使用3.3 动态条件查询 4. 性能考虑5. 常见问题和解决方案5.1 大小写敏感问题5.2 空值处理5.3 模糊匹配 6. 总结 1. 基本语法 FIND_IN_SET 函数的基本语法如下&#xff1a; FIND_IN_SET(str, st…

「Mac畅玩鸿蒙与硬件15」鸿蒙UI组件篇5 - Slider 和 Progress 组件

Slider 和 Progress 是鸿蒙系统中的常用 UI 组件。Slider 控制数值输入&#xff0c;如音量调节&#xff1b;Progress 显示任务的完成状态&#xff0c;如下载进度。本文通过代码示例展示如何使用这些组件&#xff0c;并涵盖 进度条类型介绍、节流优化、状态同步 和 定时器动态更…

ZDH权限-扩展支持数据权限

目录 项目源码 预览地址 安装包下载地址 ZDH权限模块 ZDH权限扩展更细粒度方案 第一种方案&#xff1a; 第二种方案&#xff1a; ZDH权限扩展支持数据权限-新增属性 总结 感谢支持 项目源码 zdh_web: GitHub - zhaoyachao/zdh_web: 大数据采集,抽取平台 预览地址 后…

私有化视频平台EasyCVR海康大华宇视视频平台视频诊断技术是如何实时监测视频质量的?

在现代视频监控系统中&#xff0c;确保视频流的质量和稳定性至关重要。随着技术的进步&#xff0c;视频诊断技术已经成为实时监测视频质量的关键工具。这种技术通过智能分析算法对视频流进行实时评估和处理&#xff0c;能够自动识别视频中的各种质量问题&#xff0c;并给出相应…

Java 用户随机选择导入ZIP文件,解压内部word模板并入库,Windows/可视化Linux系统某麒麟国防系统...均可适配

1.效果 压缩包内部文件 2.依赖 <!--支持Zip--><dependency><groupId>net.lingala.zip4j</groupId><artifactId>zip4j</artifactId><version>2.11.5</version></dependency>总之是要File类变MultipartFile类型的 好像是…

论文笔记(五十四)pi0: A Vision-Language-Action Flow Model for General Robot Control

π0: A Vision-Language-Action Flow Model for General Robot Control 文章概括摘要I. INTRODUCTIONII. RELATED WORKIII. OVERVIEWIV. π 0 \pi_0 π0​模型V. 数据收集和培训配方A. 预训练和后训练B. 语言和高级策略C. 机器人系统细节 VI. 实验评估A. 基础模型评估B. 遵循语…

《AI产品经理手册》——解锁AI时代的商业密钥

在当今这个日新月异的AI时代&#xff0c;每一位产品经理都面临着前所未有的挑战与机遇&#xff0c;唯有紧跟时代潮流&#xff0c;深入掌握AI技术的精髓&#xff0c;才能在激烈的市场竞争中独占鳌头。《AI产品经理手册》正是这样一部为AI产品经理量身定制的实战宝典&#xff0c;…

论文略读:Self-Knowledge Guided Retrieval Augmentation for Large Language Models

2023 emnlp findings RAG 召回的辅助信息不总是有用&#xff0c;甚至可能起负作用 原本对“德牧能不能进机场”这样的问题&#xff0c;ChatGPT是高度认可德牧作为导盲犬的但是检索模块召回了一段“老德牧是一类 balabala 某种狗的争议性名称”的百科介绍作为额外上文输入后&am…

使用Postman进行API测试

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Postman进行API测试 Postman 简介 安装 Postman 创建请求 组织请求 发送请求 查看响应 使用环境变量 编写测试脚本 示例测试…

鸿蒙系统的优势 不足以及兼容性与未来发展前景分析

2024 年 10 月 22 日&#xff1a;华为正式发布原生鸿蒙操作系统 HarmonyOS next&#xff0c;并正式命名为 HarmonyOS 5&#xff0c;这是鸿蒙系统史上最大的升级&#xff0c;实现了国产操作系统从底层架构到应用生态的全面自主可控。 鸿蒙系统与安卓、iOS 相比&#xff0c;具有…

MT1421-MT1430 码题集 (c 语言详解)

目录 MT1421异或 MT1422总位数 MT1423被3整除 MT1424卡特兰序列 MT1425小码哥的序列 MT1426普洛尼克数 MT1427素数序列 MT1428最小素数因子 MT1429最小正整数 MT1430回文数组 MT1421异或 给定一个由N(<1000)个整数组成的数组&#xff0c;把数组元素任意两两进行异或&#x…

游游的游戏大礼包

游游的游戏大礼包 import java.util.*; public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);long n in.nextInt();long m in.nextInt();long a in.nextInt();long b in.nextInt();long ret 0;for(long x 0; x < Math.…

SpringBoot框架:作业管理系统构建之道

摘 要 使用旧方法对作业管理信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在作业管理信息的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及时纠正等问题。 这次开发的作业管理系统有管…