计算机毕业设计django+大模型租房推荐系统 租房可视化 租房大屏可视化 租房爬虫 spark 58同城租房爬虫 房源推荐系统

news2025/1/1 23:56:08

开题报告:《Django+大模型租房推荐系统》

一、研究背景与意义

随着城市化进程的加快,房屋租赁市场日益繁荣。然而,传统的房屋租赁方式存在信息不对称、交易流程繁琐等问题,给租户和房主带来了诸多不便。因此,开发一套高效、便捷、透明的房屋租赁系统具有重要的现实意义。本研究旨在设计并实现一套基于Django框架和大模型的租房推荐系统,通过整合线上线下资源,提供个性化的房源推荐服务,解决传统租赁方式中存在的问题。

二、研究目的与目标

研究目的
设计并实现一套基于Django框架和大模型的租房推荐系统,以提高租赁市场的效率和透明度,满足现代用户对租房服务的需求。

具体目标

  1. 设计用户友好的界面和功能,提高用户体验。
  2. 建立完善的房屋信息管理和租赁流程,确保交易的顺利进行。
  3. 利用大模型技术实现个性化的房源推荐功能,提高租房匹配效率。
  4. 构建房租缴纳系统,方便租户进行租金支付。
三、研究内容与方法

研究内容

  1. 用户需求分析:通过调研和分析用户对于房屋租赁系统的需求和期望,确定系统的功能和特点。
  2. 系统功能设计:根据用户需求和系统定位,设计用户、房主、房屋类型、房屋信息、房屋租赁、租赁手续费、租赁申请、租赁合同、房租缴纳等系统功能。
  3. 数据库设计与实现:设计并实现与系统功能相匹配的数据库,存储和管理用户信息、房屋信息、租赁记录等数据。
  4. 大模型推荐系统开发:利用大模型技术,根据用户的搜索历史和偏好,实现个性化的房源推荐功能。
  5. 系统开发与测试:根据系统功能设计,进行系统的开发和测试,确保系统的稳定性和可靠性。
  6. 用户反馈与改进:通过用户反馈和数据分析,对系统进行改进和优化,提高用户体验和满意度。

研究方法

  1. 文献调研:查阅相关文献,了解国内外在租房系统和大模型推荐技术方面的研究进展。
  2. 需求分析:通过问卷调查、访谈等方式,收集用户对租房系统的需求和期望。
  3. 技术选型:根据系统需求和技术特点,选择Django作为后端框架,Vue.js作为前端框架,MySQL作为数据库,大模型技术用于推荐系统。
  4. 系统开发:按照系统设计进行编码、测试、部署等工作。
  5. 数据分析:利用数据分析工具,对系统数据进行挖掘和分析,优化推荐算法。
四、拟解决的关键问题
  1. 如何设计用户友好的界面和功能,提高用户体验。
  2. 如何建立完善的房屋信息管理和租赁流程,确保交易的顺利进行。
  3. 如何利用大模型技术实现个性化的房源推荐功能,提高租房匹配效率。
  4. 如何构建房租缴纳系统,方便租户进行租金支付。
五、进度安排

第一阶段(2024年3月1日至2024年3月31日):收集资料,进行文献调研和需求分析。

第二阶段(2024年4月1日至2024年5月31日):系统设计,包括功能设计、数据库设计、大模型推荐算法设计等。

第三阶段(2024年6月1日至2024年8月31日):系统开发,进行编码、测试、调试等工作。

第四阶段(2024年9月1日至2024年10月31日):系统测试与优化,根据用户反馈和数据分析,对系统进行改进和优化。

第五阶段(2024年11月1日至2024年12月31日):撰写论文,准备毕业答辩。

六、预期成果
  1. 设计并实现一套基于Django框架和大模型的租房推荐系统。
  2. 发表一篇关于租房推荐系统的学术论文。
  3. 提供系统的源码、数据库和文档,供后续研究和应用。
七、参考文献

[此处列出相关文献,由于篇幅限制,未具体列出。]


本开题报告旨在明确《Django+大模型租房推荐系统》的研究背景、目的、内容、方法、进度安排和预期成果,为后续的系统开发和论文撰写提供指导。

在构建一个租房推荐算法时,我们通常会利用机器学习模型来预测用户可能感兴趣的房源。以下是一个简化的租房推荐算法示例,它使用了Python和scikit-learn库来构建一个基于用户特征的推荐系统。请注意,这个示例并没有直接集成到Django中,但你可以根据需要将其集成到你的Django项目中。

首先,你需要准备一些数据,比如用户特征(如年龄、收入、偏好等)和房源特征(如价格、面积、位置、房间数等)。然后,你可以使用这些数据来训练一个机器学习模型。

以下是一个简单的示例,使用逻辑回归模型进行租房推荐:

import pandas as pd  
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression  
from sklearn.metrics import accuracy_score, classification_report  
  
# 假设你有一个DataFrame,包含了用户和房源的特征以及一个标签,表示用户是否对房源感兴趣  
# 这里我们创建一个模拟的DataFrame  
data = {  
    'user_age': [25, 30, 35, 40, 28, 32, 37, 45],  
    'user_income': [50000, 60000, 70000, 80000, 55000, 65000, 75000, 85000],  
    'house_price': [1500, 2000, 2500, 3000, 1800, 2200, 2700, 3200],  
    'house_area': [70, 90, 110, 130, 80, 100, 120, 140],  
    'num_rooms': [2, 3, 3, 4, 2, 3, 3, 4],  
    'user_interest': [1, 0, 1, 1, 0, 1, 0, 1]  # 1表示感兴趣,0表示不感兴趣  
}  
  
df = pd.DataFrame(data)  
  
# 特征和目标变量  
X = df[['user_age', 'user_income', 'house_price', 'house_area', 'num_rooms']]  
y = df['user_interest']  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 初始化逻辑回归模型  
model = LogisticRegression()  
  
# 训练模型  
model.fit(X_train, y_train)  
  
# 在测试集上进行预测  
y_pred = model.predict(X_test)  
  
# 评估模型性能  
accuracy = accuracy_score(y_test, y_pred)  
report = classification_report(y_test, y_pred)  
  
print(f'Accuracy: {accuracy}')  
print('Classification Report:')  
print(report)  
  
# 假设你有一个新的房源和用户特征,你想预测用户是否会对这个房源感兴趣  
new_data = pd.DataFrame({  
    'user_age': [33],  
    'user_income': [72000],  
    'house_price': [2400],  
    'house_area': [105],  
    'num_rooms': [3]  
})  
  
# 使用模型进行预测  
prediction = model.predict(new_data)  
print(f'Prediction for new data: {"Interested" if prediction[0] == 1 else "Not Interested"}')

在这个示例中,我们创建了一个包含用户和房源特征的DataFrame,并使用逻辑回归模型来预测用户是否会对某个房源感兴趣。然后,我们在测试集上评估了模型的性能,并预测了一个新用户对一个新房源的兴趣。

要将这个算法集成到Django项目中,你可以创建一个Django应用,将用户和房源数据存储在数据库中,然后编写视图和API端点来处理数据输入和输出,并使用这个机器学习模型进行预测。你可能还需要在Django项目中设置一个定期任务来重新训练模型,以适应新的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2228884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LLM之RAG实战(四十七)| GraphRAG:使用知识图谱改进 RAG 检索策略

在 Retrieval Augmented Generation (RAG) 技术中,检索是直接影响生成输出质量的关键步骤。然而,基础 RAG 中的向量检索技术通常不足以满足所有情况。例如,传统的检索方法在处理大型私有文档存储库时往往表现不佳。许多…

希亦内衣洗衣机Pro:18项核心数据硬核黑科技,爆发10倍洁净力!

随着人们卫生意识越来越强,小型洗衣机成为热门家电,尤其是对于女士和有婴儿的家庭。近日,洗护领域的佼佼者希亦正式推出了最新款的内衣洗衣机——希亦ACE Pro,为追求精致生活的人们,带来了新的选择,能提供更…

零基础学西班牙语,柯桥专业小语种培训泓畅学校

No te comas el coco, seguro que te ha salido bien la entrevista. Ya te llamarn. 别瞎想了!我保证你的面试很顺利。他们会给你打电话的。 这里的椰子是"头"的比喻。在西班牙的口语中,我们也可以听到其他同义表达,比如&#x…

【python】OpenCV—WaterShed Algorithm

文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、更多例子7、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割…

微服务设计模式 - 特性标志(Feature Flags)

微服务设计模式 - 特性标志(Feature Flags) 定义 特性标志(Feature Flags),又称特性开关(Feature Toggles),是一种常见的云计算设计模式,允许开发人员通过配置动态地打开…

WebStorm EsLint报红色波浪线

如图左侧。 这个错误是由于 ESLint 和 Prettier 的配置不一致导致的。它建议你移除多余的空格。以下是一些解决方法: 安装 Prettier 插件: 确保你在 WebStorm 中安装了 Prettier 插件,并确保它配置正确。 调整 ESLint 配置: 检查…

四、k8s快速入门之Kubernetes资源清单

kubernetes中的资源 ⭐️ k8s中所有的内容都抽象为资源,资源实列化之后,叫做对象 1️⃣名称空间级别 ⭐️ kubeadm在执行k8s的pod的时候会在kube-system这个名称空间下执行,所以说当你kubectl get pod 的时候是查看不到的查看的是默认的po…

数据库->数据库约束

目录 一、数据库约束 1.定义 2.约束类型 3.NOT NULL 非空约束 4. UNIQUE 唯一约束 5.PRIMARY KEY 主键约束 1.主键的使用 2.把表中的主键交给数据库自己维护 2.1主键列设置为null 则使用自增 2.2插入除了主键以外的所有非空列(推荐方法) 2.3自…

Kafka相关API开发

(一)引入依赖 用API直接去操作kafka(读写数据)在实际开发中用的并不多,学习它主要还是为了加深对Kafka功能的理解。kafka的读写操作,实际开发中,是通过各类更上层的组件去实现。而这些组件在读写kafka数据时,用的当然是kafka的jav…

【K8S系列】Kubernetes 中 NodePort 类型的 Service 无法访问的问题【已解决】

在 Kubernetes 中,NodePort 类型的 Service 允许用户通过每个节点的 IP 地址和指定的端口访问应用程序。如果 NodePort 类型的 Service 无法通过节点的 IP 地址和指定端口进行访问,可能会导致用户无法访问应用。本文将详细分析该问题的常见原因及其解决方…

如何使用AdsPower指纹浏览器克服爬虫技术限制,安全高效进行爬虫!

随着中国开发者日益成熟,应用质量明显提升,越来越多的开发者选择出海寻找机会扩大市场。但“应用出海”说起来容易,做起来难。其中,最大的困恼就是对海外市场缺乏了解。 很多开发者会选择使用网络爬虫(Web Crawling&a…

centos7之LVS-DR模式传统部署

介绍 优缺点以及适用场景 优点:能负载更多的Realserver减轻LB的压力,性能高于tun模式。 缺点:不支持端口转发(VIP:80必须代理RIP:80),Realserver和LVS需要在同一网段下。 适用:适用于大多数公司,也是大多数公司用的最多的模式。…

爬虫+数据保存2

爬取数据保存到MySQL数据库 这篇文章, 我们来讲解如何将我们爬虫爬取到的数据, 进行保存, 而且是把数据保存到MySQL数据库的方式去保存。 目录 1.使用pymysql连接数据库并执行插入数据sql代码(insert) 2.优化pymysql数据库连接以及插入功能代码 3.爬取双色球网站的数据并保…

什么样的工程项目管理软件适合中小施工企业?

工程行业是典型的传统行业,劳动密集,协作频繁,依赖经验传承。在工程项目施工过程中,常见的难题纷繁复杂,其中包括效率低下、材料浪费、数据不实、原材料成本上涨、工期延误、质量缺陷和安全风险等。这些问题不仅阻碍了…

机器学习中的嵌入是什么?

一、说明 嵌入是真实世界对象的数字表示,机器学习(ML)和人工智能(AI)系统利用它来像人类一样理解复杂的知识领域。例如,计算算法了解 2 和 3 之间的差为 1,这表明与 2 和 100 相比,2…

NVR设备ONVIF接入平台EasyCVR视频融合平台智慧小区视频监控系统建设方案

一、方案背景 智慧小区构成了“平安城市”建设的基石。随着社会的进步,社区安全问题逐渐成为公众关注的热点。诸如高空抛物、乱丢垃圾、破坏车辆、入室盗窃等不文明行为和违法行为频繁出现。目前,许多小区的物业管理和安全防护系统仍然较为简单和陈旧&a…

Typora一款极简Markdown文档编辑器和阅读器,实时预览,序列号生成!免费!最新可用!

文章目录 一、Typora下载和安装二、Typora序列号生成 Typora是一款Markdown编辑器和阅读器,风格极简,实时预览,所见即所得,支持MacOS、Windows、Linux操作系统,有图片和文字、代码块、数学公式、图表、目录大纲、文件管…

uniapp的video视频属性打包app后层级过高

问题:在使用uniapp开发APP时,使用video标签显示视频发现H5可以正常展示,但是打包到APP后,它的层级过高,把底部导航都盖住了。 官网说明:uni-app官网 官网给了cover-view组件或plus.nativeObj.view、subNVue…

人工智能原理实验一:知识的表示与推理实验

一、实验目的 本实验课程是计算机、智能、物联网等专业学生的一门专业课程,通过实验,帮助学生更好地掌握人工智能相关概念、技术、原理、应用等;通过实验提高学生编写实验报告、总结实验结果的能力;使学生对智能程序、智能算法等有…

混凝土裂缝图像分割系统:快速图像识别

混凝土裂缝图像分割系统源码&数据集分享 [yolov8-seg-C2f-RFAConv&yolov8-seg-C2f-SCConv等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Glo…