【Java网络编程】从套接字(Socket)概念到UDP与TCP套接字编程

news2024/10/27 9:55:55

目录

网络编程

1.socket套接字

2.udp数据报套接字编程

DatagramSocket API

DatagramPacket API

Java基于UDP实现客户端-服务器代码实例

3.tcp流套接字编程

ServerSocket API

Socket API

TCP中的长短连接

 Java基于TCP客户端-服务器代码实例


网络编程

1.socket套接字

Socket 套接字,是由系统提供用于网络通信的技术,是基于 TCP/IP 协议的网络通信的基本操作单元。基于Socket 套接字的网络程序开发就是网络编程。

Socket套接字可以基于传输层协议划分为三类:

  1. 流套接字:使用传输层TCP协议,基于字节流进行传输,对于字节流来说,可以简单的理解为,传输数据是基于IO流,流式数据的特征就是在IO流没有关闭的情况下,是无边界的数据,可以多次发送,也可以分开多次接收。
  2. 数据报套接字:使用传输层UDP协议,基于数据报进行传输,对于数据报来说,可以简单的理解为,传输数据是一块一块的,发送一块数据假如100个字节,必须一次发送,接收也必须一次接收100个字节,而不能分100次,每次接收1个字节。
  3. 原始套接字:原始套接字用于自定义传输层协议,用于读写内核没有处理的IP协议数据。

套接字(Socket)编程主要基于客户端-服务器模式之间的数据传递:

使用Socket编程时我们一般需要注意以下四点:

  1. 客户端和服务端:开发时,经常是基于一个主机开启两个进程作为客户端和服务端,但真实的场景,一般都是不同主机。
  2. 注意目的IP和目的端口号,标识了一次数据传输时要发送数据的终点主机和进程
  3. Socket编程我们是使用流套接字和数据报套接字,基于传输层的TCPUDP协议,但应用层协议,也需要考虑。
  4. 关于端口被占用的问题:如果占用端口的进程A不需要运行,就可以关闭A后,再启动需要绑定该端口的进程B,如果需要运行A进程,则可以修改进程B的绑定端口,换为其他没有使用的端口。

Java实现了基于UDP和TCP两种模式的通信模型,下面我将对这两种模式相关的实现类进行讲解和演示。

2.udp数据报套接字编程

DatagramSocket API
DatagramSocket UDP Socket ,用于发送和接收 UDP 数据报。
构造方法如下:
方法签名
方法说明
DatagramSocket()
创建一个 UDP 数据报套接字的 Socket ,绑定到本机任意一个随机端口(一般用于客户端)
DatagramSocket(int port)
创建一个 UDP 数据报套接字的 Socket ,绑定到本机指定的端口(一般用于服务端)

常用方法如下:

方法签名
方法说明
void receive(DatagramPacket p)
从此套接字接收数据报(如果没有接收到数据报,该方法会阻塞等待)
void send(DatagramPacket p)
从此套接字发送数据报包(不会阻塞等待,直接发送)
void close()
关闭此数据报套接字
DatagramPacket API

DatagramPacketUDP Socket发送和接收的数据报。

构造方法如下:

方法签名
方法说明
DatagramPacket(byte[] buf, int length)
构造一个 DatagramPacket 以用来接收数据报,接收的数据保存在字节数组(第一个参数buf )中,接收指定长度(第二个参数length)
DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)
构造一个 DatagramPacket 以用来发送数据报,发送的数据为字节数组(第一个参数buf )中,从 0 到指定长度(第二个参数length)。 address 指定目的主机的 IP 和端口号

常用方法如下:

方法签名
方法说明
InetAddress getAddress()
从接收的数据报中,获取发送端主机 IP 地址;或从发送的数据报中,获取接收端主机IP 地址
int getPort()
从接收的数据报中,获取发送端主机的端口号;或从发送的数据报中,获取接收端主机端口号
byte[] getData()
获取数据报中的数据
构造 UDP 发送的数据报时,需要传入 SocketAddress ,该对象可以使用 InetSocketAddress 来创建。
Java基于UDP实现客户端-服务器代码实例

服务端代码:

import java.io.File;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.nio.charset.StandardCharsets;

public class UdpServer {
    //服务器socket要绑定固定的端口
    private static final int PORT = 8888;
    //本地文件目录要展示的根路径
    private static final String BASE_PATH = "E:/TMP";
    public static void main(String[] args) throws IOException {
        // 1.创建服务端DatagramSocket,指定端口,可以发送及接收UDP数据报
        DatagramSocket socket = new DatagramSocket(PORT);
        //不停的接收客户端udp数据报
        while (true){
            // 2.创建数据报,用于接收客户端发送的数据
            byte[] requestData = new byte[1024];//1m=1024kb, 1kb=1024byte, UDP最
多64k(包含UDP首部8byte)
            DatagramPacket requestPacket = new DatagramPacket(requestData, 
requestData.length);
            System.out.println("------------------------------------------------
---");
            System.out.println("等待接收UDP数据报...");
            // 3.等待接收客户端发送的UDP数据报,该方法在接收到数据报之前会一直阻塞,接收到数
据报以后,DatagramPacket对象,包含数据(bytes)和客户端ip、端口号
            socket.receive(requestPacket);
            System.out.printf("客户端IP:%s%n", 
requestPacket.getAddress().getHostAddress());
            System.out.printf("客户端端口号:%s%n", requestPacket.getPort());
            // 7.接收到的数据作为请求,根据请求数据执行业务,并返回响应
            for (int i = 0; i < requestData.length; i++) {
                byte b = requestData[i];
                if(b == '\3') {
                    // 7-1.读取请求的数据:读取到约定好的结束符(\3),取结束符之前的内容
                    String request = new String(requestData, 0, i);
                    // 7-2.根据请求处理业务:本地目录根路径+请求路径,作为要展示的目录,列
出下一级子文件
                    //请求的文件列表目录
                    System.out.printf("客户端请求的文件列表路径为:%s%n", BASE_PATH +
request);
                    File dir = new File(BASE_PATH + request);
                    //获取下一级子文件,子文件夹
                    File[] children = dir.listFiles();
                    // 7-3.构造要返回的响应内容:每个文件及目录名称为一行
                    StringBuilder response = new StringBuilder();
                    if(children != null){
                        for (File child : children) {
                            response.append(child.getName()+"\n");
                       }
                   }
                    //响应也要约定结束符
                    response.append("\3");
                    byte[] responseData =
response.toString().getBytes(StandardCharsets.UTF_8);
                    // 7-4.构造返回响应的数据报DatagramPacket,注意接收的客户端数据报包
含IP和端口号,要设置到响应的数据报中
                    DatagramPacket responsePacket = new
DatagramPacket(responseData, responseData.length, 
requestPacket.getSocketAddress());
                    // 7-5.发送返回响应的数据报
                    socket.send(responsePacket);
                    break;
               }
           }
       }
   }
}

客户端代码:

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.charset.StandardCharsets;
import java.util.Scanner;

public class UdpClient {
    // 服务端socket地址,包含域名或IP,及端口号
    private static final SocketAddress ADDRESS = new
InetSocketAddress("localhost", 8888);
    public static void main(String[] args) throws IOException {
        // 4.创建客户端DatagramSocket,开启随机端口就行,可以发送及接收UDP数据报
        DatagramSocket socket = new DatagramSocket();
        // 5-1.准备要发送的数据:这里调整为键盘输入作为发送的内容
        Scanner scanner = new Scanner(System.in);
        while(true){
            System.out.println("------------------------------------------------
---");
            System.out.println("请输入要展示的目录:");
            // 5-2.每输入新行(回车),就作为UDP发送的数据报,为了接收端获取有效的内容(去除
空字符串),约定\3为结束
            String request = scanner.nextLine() + "\3";
            byte[] requestData = request.getBytes(StandardCharsets.UTF_8);
            // 5-3.组装要发送的UDP数据报,包含数据,及发送的服务端信息(服务器IP+端口号)
            DatagramPacket requestPacket = new DatagramPacket(requestData, 
requestData.length, ADDRESS);
            // 6.发送UDP数据报
            socket.send(requestPacket);
            // 8.接收服务端响应的数据报,并根据响应内容决定下个步骤(我们这里简单的打印即可)
            // 8-1.创建数据报,用于接收服务端返回(发送)的响应
            byte[] responseData = new byte[1024];
            DatagramPacket responsePacket = new DatagramPacket(responseData, 
responseData.length);
            // 8-2.接收响应数据报
            socket.receive(responsePacket);
            System.out.println("该目录下的文件列表为:");
            // byte[]下次解析的起始位置
            int next = 0;
            for (int i = 0; i < responseData.length; i++) {
                byte b = responseData[i];
                if(b == '\3')//结束符退出
                    break;
                if(b == '\n'){//换行符时进行解析
                    //起始位置到换行符前一个索引位置为要解析的内容
                    String fileName = new String(responseData, next, i-next);
                    System.out.println(fileName);
                    //下次解析从换行符后一个索引开始
                    next = i+1;
               }
           }
       }
   }
}

3.tcp流套接字编程

ServerSocket API

ServerSocket 是创建TCP服务端SocketAPI.

构造方法如下:

方法签名方法说明
ServerSocket(int port)
创建一个服务端流套接字 Socket ,并绑定到指定端口

常用方法如下:

方法签名方法说明
Socket accept()
开始监听指定端口(创建时绑定的端口),有客户端连接后,返回一个服务端 Socket对象,并基于该Socket 建立与客户端的连接,否则阻塞等待
void close()
关闭此套接字
Socket API
Socket 是客户端 Socket ,或服务端中接收到客户端建立连接( accept 方法)的请求后,返回的服务端Socket。
不管是客户端还是服务端 Socket ,都是双方建立连接以后,保存的对端信息,及用来与对方收发数据的。
构造方法:
方法签名
方法说明
Socket(String host, int port)
创建一个客户端流套接字 Socket ,并与对应 IP 的主机上,对应端口的进程建立连接
常用方法如下:
方法签名方法说明
InetAddress getInetAddress()
返回套接字所连接的地址
InputStream getInputStream()
返回此套接字的输入流
OutputStream getOutputStream()
返回此套接字的输出流
TCP中的长短连接
TCP 发送数据时,需要先建立连接,什么时候关闭连接就决定是短连接还是长连接:
短连接:每次接收到数据并返回响应后,都关闭连接,即是短连接。也就是说,短连接只能一次收发数据。
长连接:不关闭连接,一直保持连接状态,双方不停的收发数据,即是长连接。也就是说,长连接可以多次收发数据。
对比以上长短连接,两者区别如下:
  • 建立连接、关闭连接的耗时:短连接每次请求、响应都需要建立连接,关闭连接;而长连接只需要第一次建立连接,之后的请求、响应都可以直接传输。相对来说建立连接,关闭连接也是要耗时的,长连接效率更高。
  • 主动发送请求不同:短连接一般是客户端主动向服务端发送请求;而长连接可以是客户端主动发送请求,也可以是服务端主动发。
  • 两者的使用场景有不同:短连接适用于客户端请求频率不高的场景,如浏览网页等。长连接适用于客户端与服务端通信频繁的场景,如聊天室,实时游戏等。
基于 BIO (同步阻塞 IO )的长连接会一直占用系统资源。对于并发要求很高的服务端系统来说,这样的消耗是不能承受的。实际应用时,服务端一般是基于NIO (即同步非阻塞 IO )来实现长连接,性能可以极大的提升。
 Java基于TCP客户端-服务器代码实例

服务端代码如下:

import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
public class TcpServer {
    //服务器socket要绑定固定的端口
    private static final int PORT = 8888;
    public static void main(String[] args) throws IOException {
        // 1.创建一个服务端ServerSocket,用于收发TCP报文
        ServerSocket server = new ServerSocket(PORT);
        // 不停的等待客户端连接
        while(true) {
            System.out.println("------------------------------------------------
---");
            System.out.println("等待客户端建立TCP连接...");
            // 2.等待客户端连接,注意该方法为阻塞方法
            Socket client = server.accept();
            System.out.printf("客户端IP:%s%n", 
client.getInetAddress().getHostAddress());
            System.out.printf("客户端端口号:%s%n", client.getPort());
            // 5.接收客户端的数据,需要从客户端Socket中的输入流获取
            System.out.println("接收到客户端请求:");
            InputStream is = client.getInputStream();
            // 为了方便获取字符串内容,可以将以上字节流包装为字符流
            BufferedReader br = new BufferedReader(new InputStreamReader(is, 
"UTF-8"));
            String line;
            // 一直读取到流结束:TCP是基于流的数据传输,一定要客户端关闭Socket输出流才表示服
务端接收IO输入流结束
            while ((line = br.readLine()) != null) {
                System.out.println(line);
           }
            // 6.双方关闭连接:服务端是关闭客户端socket连接
            client.close();
       }
   }
}

客户端代码如下:

import java.io.*;
import java.net.Socket;
public class TcpClient {
    //服务端IP或域名
    private static final String SERVER_HOST = "localhost";
    //服务端Socket进程的端口号
    private static final int SERVER_PORT = 8888;
    public static void main(String[] args) throws IOException {
        // 3.创建一个客户端流套接字Socket,并与对应IP的主机上,对应端口的进程建立连接
        Socket client = new Socket(SERVER_HOST, SERVER_PORT);
        // 4.发送TCP数据,是通过socket中的输出流进行发送
        OutputStream os = client.getOutputStream();
        // 为了方便输出字符串作为发送的内容,可以将以上字节流包装为字符流
        PrintWriter pw = new PrintWriter(new OutputStreamWriter(os, "UTF-8"));
        // 4-1.发送数据:
        pw.println("hello world!");
        // 4-2.有缓冲区的IO操作,真正传输数据,需要刷新缓冲区
        pw.flush();
        // 7.双方关闭连接:客户端关闭socket连接
        client.close();
   }
}
以上客户端与服务端建立的为短连接,每次客户端发送了 TCP 报文,及服务端接收了 TCP 报文后,双方都会关闭连接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2224584.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云对象存储进阶

《使用Minio搭建文件服务器》一文对minio作了简单的介绍&#xff0c;本文为进阶学习。 1.对象存储产品介绍 目前市场上流行各种对象存储服务&#xff0c;诸如以下&#xff1a; Amazon S3&#xff1a;亚马逊提供的服务&#xff0c; 是市场上最成熟的产品&#xff0c;拥有最大的…

ATom:2016-2018 年沿飞行轨迹的 CAM-chem/CESM2 模型输出

目录 简介 摘要 代码 引用 网址推荐 知识星球 机器学习 ATom: CAM-chem/CESM2 Model Outputs Along Flight Tracks, 2016-2018 ATom&#xff1a;2016-2018 年沿飞行轨迹的 CAM-chem/CESM2 模型输出 简介 该数据集包含沿 ATom 飞行轨迹的 CAM-chem&#xff08;带化学的…

[ARM-2D 专题]5 MDK编译器一个旧版本-Ofast优化bug的问题及解决办法

最近开始大量基于ARM-2D开发应用项目&#xff0c;为了达到最佳性能&#xff0c;我们使用了编译器的许多特殊技能&#xff0c;其中就包含了-Ofast优化&#xff0c;很不幸&#xff0c;一不小心踩坑了。 案发情况如下&#xff1a; 使用的MDK版本5.36&#xff0c;编译器6.16 优化选…

在GeoTools中的Shapefile属性表读取效率之Shp与Dbf对比

目录 前言 一、POI测试数据简介 1、选用的POI数据 2、关于数据的属性数据 二、属性数据读取的两种方式实现 1、基于DbaseFileReader的读取 2、基于SimpleFeatureSource的读取 三、实际运行对比 1、内存和CPU占用情况 2、运行耗时情况 四、总结 前言 众所周知&#x…

【深度学习中的注意力机制10】11种主流注意力机制112个创新研究paper+代码——交叉注意力(Cross-Attention)

【深度学习中的注意力机制10】11种主流注意力机制112个创新研究paper代码——交叉注意力&#xff08;Cross-Attention&#xff09; 【深度学习中的注意力机制10】11种主流注意力机制112个创新研究paper代码——交叉注意力&#xff08;Cross-Attention&#xff09; 文章目录 【…

‌Spring MVC的主要组件有哪些?

前言 SpringMVC的核心组件包括DispatcherServlet、Controller、HandlerMapping、HandlerAdapter、ViewResolver、ModelAndView等&#xff0c;它们协同工作以支持基于MVC架构的Web应用程序开发。这些组件使得开发人员能够以一种声明式和模块化的方式构建Web应用程序&#xff0c…

小程序开发实战:PDF转换为图片工具开发

目录 一、开发思路 1.1 申请微信小程序 1.2 编写后端接口 1.3 后端接口部署 1.4 微信小程序前端页面开发 1.5 运行效果 1.6 小程序部署上线 今天给大家分享小程序开发系列&#xff0c;PDF转换为图片工具的开发实战&#xff0c;感兴趣的朋友可以一起来学习一下&#xff01…

ECharts饼图-基础南丁格尔玫瑰图,附视频讲解与代码下载

引言&#xff1a; 在数据可视化的世界里&#xff0c;ECharts凭借其丰富的图表类型和强大的配置能力&#xff0c;成为了众多开发者的首选。今天&#xff0c;我将带大家一起实现一个饼图图表&#xff0c;通过该图表我们可以直观地展示和分析数据。此外&#xff0c;我还将提供详…

一、在cubemx下RTC配置调试实例测试

一、rtc的时钟有lse提供。 二、选择rtc唤醒与闹钟功能 内部参数介绍 闹钟配置 在配置时间时&#xff0c;注意将时间信息存储起来&#xff0c;防止复位后时间重新配置。 if(HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR0)! 0x55AA)//判断标志位是否配置过&#xff0c;没有则进…

qt EventFilter用途详解

一、概述 EventFilter是QObject类的一个事件过滤器&#xff0c;当使用installEventFilter方法为某个对象安装事件过滤器时&#xff0c;该对象的eventFilter函数就会被调用。通过重写eventFilter方法&#xff0c;开发者可以在事件处理过程中进行拦截和处理&#xff0c;实现对事…

WSL2 Ubuntu22.04编译安装LLVM

前提 这两天因为工作需要&#xff0c;要编译一个Debug版本的llvm。这里对编译安装过程进行一个简单的记录&#xff0c;同时也记录下这个过程中遇到的几个问题。 下载源码并编译 有关llvm编译安装的官方文档在这里。 从git仓库clone llvm的源码。 git clone https://github.c…

FPGA搭建PCIE3.0通信架构简单读写测试,基于XDMA中断模式,提供3套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的PCIE方案本博客方案的PCIE2.0版本 3、PCIE基础知识4、工程详细设计方案工程设计原理框图XDMA配置及使用XDMA中断模块数据缓存架构用户逻辑Windows版本XDMA驱动安装Linux版本XDMA驱动安装测试应用程序工程源码架构PCIE上板…

电磁场-Laplace算子与冲激函数的关系

csdn重新打一遍公式太麻烦了。欢迎转到我的知乎账号上查阅原版文章&#xff0c;也可后台私信我发送原版PDF或者markdown。 电磁场-Laplace算子与冲激函数的关系 - 知乎 下面的文章是一张超大的图片。

论1+2+3+4+... = -1/12 的不同算法

我们熟知自然数全加和&#xff0c; 推导过程如下&#xff0c; 这个解法并不难&#xff0c;非常容易看懂&#xff0c;但是并不容易真正理解。正负交错和无穷项计算&#xff0c;只需要保持方程的形态&#xff0c;就可以“预知”结果。但是这到底说的是什么意思&#xff1f;比如和…

C++扑克牌(poker)2024年CSP-J认证第二轮第一题 CCF信息学奥赛C++ 中小学初级组 第二轮真题解析

目录 C扑克牌&#xff08;poker&#xff09; 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、运行结果 五、考点分析 六、推荐资料 C扑克牌&#xff08;poker&#xff09; 2024年CSP-J认证第二轮第一题 一、题目要求 1、编程实现 小 P 从同学…

HarmonyOS 组件样式@Style 、 @Extend、自定义扩展(AttributeModifier、AttributeUpdater)

1. HarmonyOS Style 、 Extend、自定义扩展&#xff08;AttributeModifier、AttributeUpdater&#xff09; Styles装饰器&#xff1a;定义组件重用样式   ;Extend装饰器&#xff1a;定义扩展组件样式   自定义扩展&#xff1a;AttributeModifier、AttributeUpdater 1.1. 区…

HarmonyOS 5.0应用开发——应用打包HAP、HAR、HSP

【高心星出品】 目录 应用打包HAP、HAR、HSPModule类型HAPHAR创建HAR建立依赖HAR共享内容 HSP创建HSP建立依赖同上HSP共享内容同上 HAR VS HSP 应用打包HAP、HAR、HSP 一个应用通常会包含多种功能&#xff0c;将不同的功能特性按模块来划分和管理是一种良好的设计方式。在开发…

【哈工大_操作系统实验】Lab9 proc文件系统的实现

本节将更新哈工大《操作系统》课程第九个 Lab 实验 proc文件系统的实现。按照实验书要求&#xff0c;介绍了非常详细的实验操作流程&#xff0c;并提供了超级无敌详细的代码注释。 实验目的&#xff1a; 掌握虚拟文件系统的实现原理&#xff1b;实践文件、目录、文件系统等概念…

【C++开篇】

首先初阶的数据结构相信大家已经学习的差不多了&#xff0c;关于初阶数据结构排序的相关内容的总结随后我也会给大家分享出来。C语言和C有许多相同的地方&#xff0c;但也有许多不相同的地方。接下来的C部分&#xff0c;我们主要是针对C与C语言不同的地方来与大家进行分享。其中…

量子变分算法 (python qiskit)

背景 变分量子算法是用于观察嘈杂的近期设备上的量子计算效用的有前途的候选混合算法。变分算法的特点是使用经典优化算法迭代更新参数化试验解决方案或“拟设”。这些方法中最重要的是变分量子特征求解器 (VQE)&#xff0c;它旨在求解给定汉密尔顿量的基态&#xff0c;该汉密尔…